Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Strength Cond Res ; 38(7): e383-e390, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608001

RESUMO

ABSTRACT: Petré, H, Tinmark, F, Rosdahl, H, and Psilander, N. Effects of different recovery periods following a very intense interval training session on strength and explosive performance in elite female ice hockey players. J Strength Cond Res 38(7): e383-e390, 2024-This study investigates how different recovery periods after high-intensity interval training (HIIT) affects strength and explosive performance during a power training (PT) session. Fifteen female elite ice hockey players (22.5 ± 5.2 years) performed PT, including 6 sets of 2 repetitions (reps) of isometric leg press (ILP) and 6 sets of 3 reps of countermovement jump (CMJ), following a rested state and 10 minutes, 6 hours, or 24 hours after HIIT (3 sets of 8 × 20 seconds at 115% of power output at maximal oxygen consumption on a cycle ergometer). Peak force (PF) and peak rate of force development (pRFD) were measured during the ILP. Peak jump height (PJH), concentric phase duration (ConDur), eccentric phase duration, total duration, peak power (PP), velocity at peak power (V@PP), and force at peak power were measured during CMJ. The following variables were significantly reduced when only a 10-minute recovery period was allowed between HIIT and PT: PF was reduced by 7% ( p < 0.001), pRFD by 17% ( p < 0.001), PJH by 4% ( p < 0.001), ConDur by 4% ( p = 0.018), PP by 2% ( p = 0.016), and V@PP by 2% ( p = 0.007). None of the measured variables were reduced when PT was performed 6 and 24 hours after HIIT. We conclude that strength and explosive performance of elite female ice hockey players is reduced 10 minutes after HIIT but not negatively affected if a rest period of at least 6 hours is provided between HIIT and PT.


Assuntos
Desempenho Atlético , Treinamento Intervalado de Alta Intensidade , Hóquei , Força Muscular , Humanos , Hóquei/fisiologia , Feminino , Adulto Jovem , Força Muscular/fisiologia , Treinamento Intervalado de Alta Intensidade/métodos , Desempenho Atlético/fisiologia , Adulto , Consumo de Oxigênio/fisiologia , Adolescente , Músculo Esquelético/fisiologia
2.
BMC Med Res Methodol ; 22(1): 55, 2022 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-35220936

RESUMO

BACKGROUND: The heart rate (HR) method enables estimating oxygen uptake (V̇O2) in physical activities. However, there is a paucity in knowledge about the interchangeability of this method when applied to cycling, walking and running. Furthermore, with the aim of optimization, there is a need to compare different models for establishing HR-V̇O2 relationships. METHODS: Twenty-four physically active individuals (12 males and 12 females) participated. For each participant, two models of HR-V̇O2 relationships were individually established in ergometer cycling, level treadmill walking and running. Model 1 consisted of five submaximal workloads, whereas model 2 included also a maximal workload. Linear regression equations were used to estimate V̇O2 at seven intensity levels ranging between 25 and 85% of heart rate reserve (HRR). The estimated V̇O2 levels were compared between the exercise modalities and models, as well as with data from a previous study. RESULTS: A high level of resemblance in estimated V̇O2 was noted between running and cycling as well as between running and walking, with both model 1 and model 2. When comparing walking and cycling, the V̇O2 levels for given intensities of %HRR were frequently slightly higher in walking with both models (range of significant differences: 5-12%). The variations of the estimated individual V̇O2 values were reduced when using model 2 compared to model 1, both between and within the exercise modalities. CONCLUSION: The HR method is optimized by more workloads and wider ranges. This leads to overall high levels of interchangeability when HR methods are applied in ergometer cycling, level treadmill walking and running.


Assuntos
Consumo de Oxigênio , Corrida , Teste de Esforço/métodos , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Oxigênio , Consumo de Oxigênio/fisiologia , Corrida/fisiologia , Caminhada/fisiologia
3.
Sensors (Basel) ; 21(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34696005

RESUMO

The purpose of this work was to describe the leg-muscle-generated push force characteristics in sprint kayak paddlers for females and males on water. Additionally, the relationship between leg pushing force characteristics and velocity was investigated. Twenty-eight paddlers participated in the study. The participants had five minutes of self-chosen warm-up and were asked to paddle at three different velocities, including maximal effort. Left- and right-side leg extension force were collected together with velocity. Linear regression analyses were performed with leg extension force characteristics as independent variables and velocity as the dependent variable. A second linear regression analysis investigated the effect of paddling velocity on different leg extension force characteristics with an explanatory model. The results showed that the leg pushing force elicits a sinus-like pattern, increasing and decreasing throughout the stroke cycle. Impulse over 10 s showed the highest correlation to maximum velocity (r = 0.827, p < 0.01), while a strong co-correlation was observed between the impulse per stroke cycle and mean force (r = 0.910, p < 0.01). The explanatory model results revealed that an increase in paddling velocity is, among other factors, driven by increased leg force. Maximal velocity could predict 68% of the paddlers' velocity within 1 km/h with peak leg force, impulse over 10 s, and stroke rate (p-value < 0.001, adjusted R-squared = 0.8). Sprint kayak paddlers elicit a strong positive relationship between leg pushing forces and velocity. The results confirm that sprint kayakers' cyclic leg movement is a key part of the kayaking technique.


Assuntos
Músculo Esquelético/fisiologia , Esportes Aquáticos , Fenômenos Biomecânicos , Feminino , Humanos , Perna (Membro) , Masculino
4.
Eur J Appl Physiol ; 119(11-12): 2655-2671, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31628539

RESUMO

BACKGROUND: The heart rate method, based on the linear relation between heart rate and oxygen uptake, is potentially valuable to monitor intensity levels of physical activities. However, this depends not least on its reproducibility under standard conditions. This study aims, therefore, to evaluate the reproducibility of the heart rate method in the laboratory using a range of heart rates associated with walking commuting. METHODS: On two different days, heart rate and oxygen uptake measurements were made during three submaximal (model 1) and a maximal exercise intensity (model 2) on a cycle ergometer in the laboratory. 14 habitual walking commuters participated. The reproducibility, based on the regression equations from test and retest and using three levels of heart rate from the walking commuting, was analyzed. Differences between the two models were also analyzed. RESULTS: For both models, there were no significant differences between test and retest in the constituents of the regression equations (y intercept, slope and r value). Neither were there any systematic differences in estimated absolute levels of VO2 between test and retest for either model. However, some rather large individual differences were seen in both models. Furthermore, no significant differences were seen between the two models in slopes, intercepts and r values of the regression equations or in the estimated VO2. CONCLUSION: The heart rate method shows good reproducibility on the group level in estimating oxygen consumption from heart rate-oxygen uptake relations in the laboratory, and based on three levels of heart rate which are representative for walking commuting.


Assuntos
Frequência Cardíaca/fisiologia , Consumo de Oxigênio/fisiologia , Caminhada/fisiologia , Adulto , Exercício Físico/fisiologia , Teste de Esforço/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo , Reprodutibilidade dos Testes , Testes de Função Respiratória/métodos , Meios de Transporte/métodos
6.
PLoS One ; 19(5): e0300776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809815

RESUMO

PURPOSE: Studies indicate that the rated perceived exertion (RPE) during physical exercise can be lower in field environments than indoors. The environmental conditions of those studies are explored. Furthermore, we study if the same phenomenon is valid when cycling indoors versus in cycle commuting environments with high levels of stimuli from both traffic and suburban-urban elements. METHODS: Twenty commuter cyclists underwent measurements of heart rate (HR) and oxygen uptake ([Formula: see text]O2) and RPE assessments for breathing and legs, respectively, while cycling in both laboratory and field conditions. A validated mobile metabolic system was used in the field to measure [Formula: see text]O2. Three submaximal cycle ergometer workloads in the laboratory were used to establish linear regression equations between RPE and % of HR reserve (%HRR) and %[Formula: see text]O2max, separately. Based on these equations, RPE from the laboratory was predicted and compared with RPE levels at the participants' individual cycle commutes at equal intensities. The same approach was used to predict field intensities and for comparisons with corresponding measured intensities at equal RPE levels. RESULTS: The predicted RPE levels based on the laboratory cycling were significantly higher than the RPE levels in cycle commuting at equal intensities (67% of HRR; 65% of [Formula: see text]O2max). For breathing, the mean RPE levels were; 14.0-14.2 in the laboratory and 12.6 in the field. The corresponding levels for legs were; 14.0-14.2 and 11.5. The range of predicted field intensities in terms of %HRR and %[Formula: see text]O2max was 46-56%, which corresponded to median differences of 19-30% compared to the measured intensities in field at equal RPE. CONCLUSION: The cycle commuters perceived a lower exertion during their cycle commutes compared to ergometer cycling in a laboratory at equal exercise intensities. This may be due to a higher degree of external stimuli in field, although influences from other possible causes cannot be ruled out.


Assuntos
Ciclismo , Frequência Cardíaca , Consumo de Oxigênio , Esforço Físico , Humanos , Esforço Físico/fisiologia , Adulto , Masculino , Consumo de Oxigênio/fisiologia , Frequência Cardíaca/fisiologia , Ciclismo/fisiologia , Percepção/fisiologia , Exercício Físico/fisiologia , Feminino , Teste de Esforço , Adulto Jovem
7.
Eur J Appl Physiol ; 113(5): 1353-67, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23224357

RESUMO

This study evaluated the Moxus metabolic system with the Douglas bag method (DBM) as criterion. Reliability and validity were investigated in a wide range of ventilation and oxygen uptake and two sensors for determining ventilation were included. Thirteen well-trained athletes participated in one pre-test and four tests for data collection, exercising on a cycle ergometer at five submaximal powers (50-263 W) and at VO2max. Gas exchange variables were measured simultaneously using a serial setup with data collected on different days in an order randomized between Moxus with pneumotachometer (MP) and turbine flowmeter (MT) sensors for ventilation. Reliability with both sensors was comparable to the DBM. Average CV (%) of all exercise intensities were with MP: 3.0 ± 1.3 for VO2, 3.8 ± 1.5 for VCO2, 3.1 ± 1.2 for the respiratory exchange ratio (RER) and 4.2 ± 0.8 for V E. The corresponding values with MT were: 2.7 ± 0.3 for VO2, 4.7 ± 0.4 for VCO2, 3.3 ± 0.9 for RER and 4.8 ± 1.4 for V E. Validity was acceptable except for small differences related to the determination of ventilation. The relative differences in relation to DBM at the powers including VO2max were similar for both sensors with the ranges being: +4 to -2 % for V E, +5 to -3 % for VO2 and +5 to -4 % for VCO2 while RER did not differ at any power. The Moxus metabolic system shows high and adequate reliability and reasonable validity over a wide measurement range. At a few exercise levels, V E differed slightly from DBM, resulting in concomitant changes in VO2 and VCO2.


Assuntos
Gasometria/métodos , Adulto , Humanos , Masculino , Espirometria/métodos
8.
Sports (Basel) ; 11(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37234052

RESUMO

Isometric leg press (ILP) and countermovement jump (CMJ) are commonly used to obtain strength- and power-related variables with important implications for health maintenance and sports performance. To enable the identification of true changes in performance with these measurements, the reliability must be known. This study evaluates the between-session reliability of strength- and power-related measures obtained from ILP and CMJ. Thirteen female elite ice hockey players (21.5 ± 5.1 years; 66.3 ± 8.0 kg) performed three maximal ILPs and CMJs on two different occasions. Variables from the ILP (peak force and peak rate of force development) and CMJ (peak power, peak force, peak velocity, and peak jump height) were obtained. The results were reported using the best trial, an average of the two best trials, or an average of three trials. The intraclass correlation coefficient (ICC) and coefficient of variation (CV) were high (ICC > 0.97; CV < 5.2%) for all outcomes. The CV for the CMJ (1.5-3.2%) was lower than that for the ILP (3.4-5.2%). There were no differences between reporting the best trial, an average of the two best trials, or an average of the three trials for the outcomes. ILP and CMJ are highly reliable when examining strength- and power-related variables in elite female ice hockey players.

9.
Eur J Appl Physiol ; 112(1): 345-55, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21559947

RESUMO

This study aimed to validate a portable metabolic system in field measuring conditions, such as prolonged moderate exercise at low temperatures, high humidity and with external wind. VO(2), VCO(2), RER and V (E) were measured using the Oxycon Mobile (OM), with a windshield, during cycle ergometer exercise: (1) indoors at three submaximal workloads with no wind or with external wind (13-20 m s(-1)) from front, side and back; (2) at two submaximal workloads outdoors (12 ± 2°C; 86 ± 7% relative humidity (RH)), with and without a system for drying the ambient air around the air sampling tube; and (3) at one workload outdoors for 45 min (5 ± 4°C; 69 ± 16.5% RH). Any physiological drift was checked for with pre- and postmeasurements by the Douglas bag method (DBM). A minor effect of external wind from behind was noted in RER and V (E) (-2 and -3%). The system for drying the ambient air around the gas sampling tube had no effect on the measured levels. A small difference in VCO(2) drift between the OM and DBM (1.5 mL min(-2)) was noted in the stability test. The results indicated that heavy external wind applied from different directions generally does not affect the measurements of the OM and further that, when using a unit for drying the ambient air around the gas sampling tube, the OM can accurately measure VO(2), RER and V (E) at submaximal workloads for at least 45 min under challenging conditions with regard to humidity and temperature.


Assuntos
Ergometria/instrumentação , Monitorização Ambulatorial/instrumentação , Oximetria/instrumentação , Consumo de Oxigênio/fisiologia , Esforço Físico/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Front Public Health ; 10: 911863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339183

RESUMO

Background: Quantification of movement intensity and energy utilization, together with frequency of trips, duration, distance, step counts and cadence, is essential for interpreting the character of habitual walking for transport, and its potential support of health. The purpose of the study is to illuminate this with valid methods and novel perspectives, and to thereby provide a new basis for characterizing and interpreting walking in relation to health outcomes. Methods: Habitual middle-aged commuting pedestrians (males = 10, females = 10) were investigated in the laboratory at rest and with maximal treadmill and cycle ergometer tests. Thereafter, levels of oxygen uptake, energy expenditure, ventilation, heart rate, blood lactate, rated perceived exertion, cadence, number of steps, duration, distance, and speed were recorded during the normal walking commute of each participant in Greater Stockholm, Sweden. The number of commutes per week over the year was self-reported. Results: Walking in the field demanded about 30% more energy per km compared to level treadmill walking. For both sexes, the walking intensity in field was about 46% of maximal oxygen uptake, and energy expenditure amounted to 0.96 kcal · kg- 1 · km- 1. The MET values (males: 6.2; females: 6.5) mirrored similar levels of walking speed (males: 5.7; females: 5.9 km · h- 1) and levels of oxygen uptake (males: 18.6; females: 19.5 mL · kg- 1 · min- 1). The average number of MET-hours per week in a typical month was 22 for males and 20 for females. This resulted in a total weekly energy expenditure of ~1,570 and 1,040 kcal for males and females, respectively. Over the year, the number of walking commutes and their accumulated distance was ~385 trips and 800 km for both sexes. Conclusion: Walking in naturalistic field settings demands its own studies. When males and females walk to work, their relative aerobic intensities and absolute energy demands for a given distance are similar. It is equivalent to the lower part of the moderate relative intensity domain. The combination of oxygen uptake, trip duration and frequency leads to high and sustained levels of MET-hours as well as energy expenditure per week over the year, with a clear health enhancing potential. Based on this study we recommend 6000 transport steps per day, or equivalent, during five weekdays, over the year, in order to reach optimal health gains.


Assuntos
Metabolismo Energético , Caminhada , Pessoa de Meia-Idade , Masculino , Feminino , Humanos , Caminhada/fisiologia , Metabolismo Energético/fisiologia , Frequência Cardíaca/fisiologia , Oxigênio , Avaliação de Resultados em Cuidados de Saúde
11.
Sports Biomech ; : 1-15, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35475681

RESUMO

In para-kayak, athletes with unilateral above knee amputation (AK) and athletes with below knee amputation (BK) compete in the same class. This has been questioned since previous research have shown that the legs are important for paddling performance. The purpose was therefore to examine differences in kinematic and kinetic performance variables between AK and BK para-kayak athletes and the amputated (A) and non-amputated (NA) sides. Eleven AK and six BK athletes on international level participated. 3D kinematic and kinetic data were collected for the body, seat, footrest and paddle during kayak ergometer paddling. There were no significant differences between the groups in main performance variables such as power output or paddle force. Differences between the groups were only seen in the hip joint in flexion range of motion, flexion and extension angular velocity and flexion moment where BK demonstrated larger values. The NA side demonstrated greater values compared to the A side in posterior force at the seat and in hip flexion moment. As there were no significant differences between the groups in the majority of the examined key performance variables, the results suggest that athletes with unilateral AK and BK amputation may be able to compete in the same class.

12.
Sports Med ; 51(5): 991-1010, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33751469

RESUMO

BACKGROUND: The effect of concurrent training on the development of maximal strength is unclear, especially in individuals with different training statuses. OBJECTIVE: The aim of this systematic review and meta-analysis study was to compare the effect of concurrent resistance and endurance training with that of resistance training only on the development of maximal dynamic strength in untrained, moderately trained, and trained individuals. METHODS: On the basis of the predetermined criteria, 27 studies that compared effects between concurrent and resistance training only on lower-body 1-repetition maximum (1RM) strength were included. The effect size (ES), calculated as the standardised difference in mean, was extracted from each study, pooled, and analysed with a random-effects model. RESULTS: The 1RM for leg press and squat exercises was negatively affected by concurrent training in trained individuals (ES = - 0.35, p < 0.01), but not in moderately trained ( - 0.20, p = 0.08) or untrained individuals (ES = 0.03, p = 0.87) as compared to resistance training only. A subgroup analysis revealed that the negative effect observed in trained individuals occurred only when resistance and endurance training were conducted within the same training session (ES same session = - 0.66, p < 0.01 vs. ES different sessions = - 0.10, p = 0.55). CONCLUSION: This study demonstrated the novel and quantifiable effects of training status on lower-body strength development and shows that the addition of endurance training to a resistance training programme may have a negative impact on lower-body strength development in trained, but not in moderately trained or untrained individuals. This impairment seems to be more pronounced when training is performed within the same session than in different sessions. Trained individuals should therefore consider separating endurance from resistance training during periods where the development of dynamic maximal strength is prioritised.


Assuntos
Treino Aeróbico , Treinamento Resistido , Humanos , Força Muscular , Músculo Esquelético , Resistência Física , Levantamento de Peso
13.
Front Physiol ; 12: 687566, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295264

RESUMO

PURPOSE: Quantifying intensities of physical activities through measuring oxygen uptake (V̇O2) is of importance for understanding the relation between human movement, health and performance. This can in principle be estimated by the heart rate (HR) method, based on the linear relationship between HR and V̇O2 established in the laboratory. It needs, however, to be explored whether HR methods, based on HR-V̇O2 relationships determined in the laboratory, are valid for estimating spectrums of V̇O2 in field exercise. We hereby initiate such studies, and use cycle commuting as the form of exercise. METHODS: Ten male and ten female commuter cyclists underwent measurements of HR and V̇O2 while performing ergometer cycling in a laboratory and a normal cycle commute in the metropolitan area of Stockholm County, Sweden. Two models of individual HR-V̇O2 relationships were established in the laboratory through linear regression equations. Model 1 included three submaximal work rates, whereas model 2 also involved a maximal work rate. The HR-V̇O2 regression equations of the two models were then used to estimate V̇O2 at six positions of field HR: five means of quintiles and the mean of the whole commute. The estimations obtained were for both models compared with the measured V̇O2. RESULTS: The measured quintile range during commuting cycling was about 45-80% of V̇O2max. Overall, there was a high resemblance between the estimated and measured V̇O2, without any significant absolute differences in either males or females (range of all differences: -0.03-0.20 L⋅min-1). Simultaneously, rather large individual differences were noted. CONCLUSION: The present HR methods are valid at group level for estimating V̇O2 of cycle commuting characterized by relatively wide spectrums of exercise intensities. To further the understanding of the external validity of the HR method, there is a need for studying other forms of field exercises.

14.
Eur J Appl Physiol ; 109(2): 159-71, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20043228

RESUMO

The aim of this study was to evaluate two versions of the Oxycon Mobile portable metabolic system (OMPS1 and OMPS2) in a wide range of oxygen uptake, using the Douglas bag method (DBM) as criterion method. The metabolic variables VO2, VCO2 respiratory exchange ratio and VE were measured during submaximal and maximal cycle ergometer exercise with sedentary, moderately trained individuals and athletes as participants. Test-retest reliability was investigated using the OMPS1. The coefficients of variation varied between 2 and 7% for the metabolic parameters measured at different work rates and resembled those obtained with the DBM. With the OMPS1, systematic errors were found in the determination of VO2 and VCO2 At submaximal work rates VO2 was 6-14% and VCO2 5-9% higher than with the DBM. At VO2(max) both VO2 and VCO2 were slightly lower as compared to DBM (-4.1 and -2.8% respectively). With OMPS2, VO2 was determined accurately within a wide measurement range (about 1-5.5 L min(-1)), while VCO2 was overestimated (3-7%). VE was accurate at submaximal work rates with both OMPS1 and OMPS2, whereas underestimations (4-8%) were noted at VO2(max). The present study is the first to demonstrate that a wide range of VO2 can be measured accurately with the Oxycon Mobile portable metabolic system (second generation). Future investigations are suggested to clarify reasons for the small errors noted for VE and VCO2 versus the Douglas bag measurements, and also to gain knowledge of the performance of the device under applied and non-laboratory conditions.


Assuntos
Monitorização Ambulatorial , Consumo de Oxigênio , Adulto , Atletas , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
15.
Artigo em Inglês | MEDLINE | ID: mdl-33345056

RESUMO

Background: Knowledge about exercise intensity and energy expenditure combined with trip frequency and duration is necessary for interpreting the character and potential influencing capacity of habitual cycle commuting on e.g., health outcomes. It needs to be investigated with validated methods, which is the purpose of this study. Methods: Ten male and 10 female middle-aged habitual commuter cyclists were studied at rest and with maximal exercise tests on a cycle ergometer and a treadmill in the laboratory. During their normal commute in the Stockholm County, Sweden, their oxygen uptake, heart rate, energy expenditure, ventilation, blood lactate, rated perceived exertion, number of stops, durations, route distances and cycling velocities were monitored with validated methods. The frequency of trips was self-reported. Results: The relative exercise intensity was 65% of maximal oxygen uptake, and the energy expenditure was 0.46 kcal per km and kg body weight for both sexes. Sex differences in MET-values (men, 8.7; women 7.4) mirrored higher levels of cycling speed (20%), body weight (29%), oxygen uptake (54%) and ventilation (51%) in men compared to women. The number of METhours per week during peak cycling season averaged 40 for the men and 28 for the women. It corresponded to a total energy expenditure of about 3,500 and 1,880 kcal for men and women, respectively. The number of trips per year was about 370, and the annual distance cycled was on average 3,500 km for men and 2,300 for women. Conclusion: Cycle commuting is characterized by equal relative aerobic intensity levels and energy requirements for a given distance cycled by men and women. Based on an overall evaluation, it represents a lower range within the vigorous intensity category. The combined levels of oxygen uptake, durations and trip frequencies lead to high levels of METhours and energy expenditure in both men and women during both peak cycling season as well as over the year. Overall, the study presents a novel basis for interpreting cycle commuting in relation to various health outcomes.

16.
PLoS One ; 15(8): e0237388, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760167

RESUMO

INTRODUCTION: The heart rate (HR) method is a promising approach for evaluating oxygen uptake ([Formula: see text]), energy demands and exercise intensities in different forms of physical activities. It would be valuable if the HR method, established on ergometer cycling, is interchangeable with other regular activities, such as level walking. This study therefore aimed to examine the interchangeability of the HR method when estimating [Formula: see text] for ergometer cycling and level treadmill walking in submaximal conditions. METHODS: Two models of [Formula: see text] regression equations for cycle ergometer exercise (CEE) and treadmill exercise (TE) were established with 34 active commuters. Model 1 consisted of three submaximal intensities of ergometer cycling or level walking, model 2 included also one additional workload of maximal ergometer cycling or running. The regression equations were used for estimating [Formula: see text] with seven individual HR values based on 25-85% of HR reserve (HRR). The [Formula: see text] estimations were compared between CEE and TE, within and between each model. RESULTS: Only minor, and in most cases non-significant, average differences were observed when comparing the estimated [Formula: see text] levels between CEE and TE. Model 1 ranged from -0.4 to 4.8% (n.s.) between 25-85%HRR. In model 2, the differences between 25-65%HRR ranged from 1.3 to -2.7% (n.s.). At the two highest intensities, 75 and 85%HRR, [Formula: see text] was slightly lower (3.7%, 4.4%; P < 0.05), for CEE than TE. The inclusion of maximal exercise in the [Formula: see text] relationships reduced the individual [Formula: see text] variations between the two exercise modalities. CONCLUSION: The HR methods, based on submaximal ergometer cycling and level walking, are interchangeable for estimating mean [Formula: see text] levels between 25-85% of HRR. Essentially, the same applies when adding maximal exercise in the [Formula: see text] relationships. The inter-individual [Formula: see text] variation between ergometer cycling and treadmill exercise is reduced when using the HR method based on both submaximal and maximal workloads.


Assuntos
Ergometria/instrumentação , Teste de Esforço/instrumentação , Frequência Cardíaca , Caminhada/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo
17.
PLoS One ; 14(7): e0219741, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31339909

RESUMO

Monitoring aerobic exercise intensities of free-living physical activities is valuable for purposes such as education and research. The heart rate (HR) method, based on the linear relation between HR and oxygen uptake (VO2), is potentially valuable for this purpose. Three prerequisites are that the method is reproducible, and valid for the specific form of physical activity executed as well as under field conditions. The aim of this study is to evaluate reproducibility of the heart rate method in the laboratory. VO2 and HR measurements were made on two different occasions during three submaximal (model 1) plus a maximal exercise intensity (model 2) on a cycle ergometer in the laboratory. 19 habitual commuter cyclists (9 males and 10 females), aged 44 ± 3 years, were measured. The reproducibility of the estimated VO2, based on three levels of HR from commuting cycling and the regression equations from test and retest were analyzed. Differences between the two models were also studied. For both models, there were no significant differences between test and retest in the constituents of the regression equations (y-intercept, slope and r-value). Neither were there any systematic differences in estimated absolute levels of VO2 between test and retest. The relative differences between test and retest, based on estimations from three different levels of HR, were 0.99 ± 11.0 (n.s.), 2.67 ± 6.48 (n.s.) and 3.57 ± 6.24% (p<0.05) for model 1, and 1.09 ± 10.6, 1.75 ± 6.43 and 2.12 ± 5.92% (all n.s.) for model 2. However, some large individual differences were seen in both models. There were no significant differences between the two models in the slopes, intercepts or r-values of the regression equations or in the estimated levels of VO2. The heart rate method shows good reproducibility on the group level in estimating oxygen consumption from HR-VO2 relations in the laboratory, and based on three levels of HR which are representative for cycle commuting. However, on the individual level, some large variations were seen.


Assuntos
Frequência Cardíaca/fisiologia , Consumo de Oxigênio/fisiologia , Adulto , Feminino , Humanos , Masculino , Análise de Regressão , Reprodutibilidade dos Testes
18.
PLoS One ; 14(6): e0218221, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166998

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0207573.].

19.
PLoS One ; 14(6): e0218866, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31216338

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0218221.].

20.
PLoS One ; 13(11): e0207573, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30444927

RESUMO

It is important to estimate the duration-distance relation in cycle commuting in the general population since this enables analyses of the potential for various public health outcomes. Therefore, the aim is to estimate this relation in the Swedish adult population of 2015. For that purpose, the first step was to establishit for adult male and female cycle commuters in Greater Stockholm, Sweden. Whether or not the slopes of these relations needed to be altered in order to make them representative of the general population was evaluated by comparing the levels of maximal oxygen uptake in samples of commuter cyclists and the population. The measure used was the maximal oxygen uptake divided by both the body weight and a cycle weight of 18.5 kg. The body weights in the population samples were adjusted to mirror relevant levels in 2015. Age adjustments for the duration-distance relations were calculated on the basis of the maximal oxygen uptake in the population samples aged 20-65 years. The duration-distance relations of the cycle commuters were downscaled by about 24-28% to mirror levels in the general population. The empirical formula for the distance (D, km) was based on duration (T, minutes) · speed (km/min) · a correction factor from cycle commuter to the general population · age adjustment (A, years). For the males in the general population the formula was: D = T · 20.76 km/h · 0.719 · (1.676-0.0147 · A). For females, the formula was: D = T · 16.14 km/h · 0.763 · (1.604-0.0129 · A). These formulas, combined with distributions of route distances between home and work in the population, enable realistic evaluations of the potential for different public health outcomes through cycle commuting.


Assuntos
Ciclismo/fisiologia , Consumo de Oxigênio , Meios de Transporte/instrumentação , Adulto , Idoso , Peso Corporal , Planejamento Ambiental , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Suécia , Meios de Transporte/métodos , População Urbana , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa