Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
United European Gastroenterol J ; 12(6): 737-748, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366868

RESUMO

BACKGROUND: The pathobiology of the non-destructive inflammatory bowel disease (IBD) lymphocytic colitis (LC) is poorly understood. We aimed to define an LC-specific mucosal transcriptome to gain insight into LC pathology, identify unique genomic signatures, and uncover potentially druggable disease pathways. METHODS: We performed bulk RNA-sequencing of LC and collagenous colitis (CC) colonic mucosa from patients with active disease, and healthy controls (n = 4-10 per cohort). Differential gene expression was analyzed by gene-set enrichment and deconvolution analyses to identify pathologically relevant pathways and cells, respectively, altered in LC. Key findings were validated using reverse transcription quantitative PCR and/or immunohistochemistry. Finally, we compared our data with a previous cohort of ulcerative colitis and Crohn's disease patients (n = 4 per group) to distinguish non-destructive from classic IBD. RESULTS: LC can be subdivided into channelopathic LC, which is governed by organic acid and ion transport dysregulation, and inflammatory LC, which is driven by microbial immune responses. Inflammatory LC displays an innate and adaptive immunity that is limited compared to CC and classic IBD. Conversely, we noted a distinct induction of regulatory non-coding RNA species in inflammatory LC samples. Moreover, compared with CC, water channel and cell adhesion molecule gene expression decreased in channelopathic LC, whereas it was accentuated in inflammatory LC and associated with reduced intestinal epithelial cell proliferation. CONCLUSIONS: We conclude that LC can be subdivided into channelopathic LC and inflammatory LC that could be pathomechanistically distinct subtypes despite their shared clinical presentation. Inflammatory LC exhibits a dampened immune response compared to CC and classic IBDs. Our results point to regulatory micro-RNAs as a potential disease-specific feature that may be amenable to therapeutic intervention.


Assuntos
Colite Linfocítica , Mucosa Intestinal , Humanos , Colite Linfocítica/genética , Colite Linfocítica/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Transcriptoma , Feminino , Colite Colagenosa/imunologia , Colite Colagenosa/genética , Colite Colagenosa/patologia , Colite Colagenosa/diagnóstico , Doença de Crohn/imunologia , Doença de Crohn/genética , Doença de Crohn/patologia , Doença de Crohn/diagnóstico , Masculino , Colo/imunologia , Colo/patologia , Pessoa de Meia-Idade , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Colite Ulcerativa/imunologia , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colite Ulcerativa/diagnóstico , Adulto
2.
Artigo em Inglês | MEDLINE | ID: mdl-38934504

RESUMO

INTRODUCTION: Patients with inflammatory bowel disease (IBD) are predisposed to the reactivation of viral infections such as cytomegalovirus (CMV). Clinical discrimination of disease flares and colonic CMV reactivation is difficult in patients with established diagnosis of IBD, and there are no reliable noninvasive diagnostic tools yet. Furthermore, the influence of novel therapeutics including biologicals and Janus kinase inhibitors on the risk of CMV colitis is unclear. The goal of this study was to identify risk factors and clinical determinants of CMV colitis that could serve as minimally invasive markers both for active CMV colitis and relapse. METHODS: To this end, a retrospective analysis of 376 patients with suspected or confirmed CMV colitis 2016-2023 was performed. RESULTS: Previous administration of systemic steroids increased the odds of CMV colitis to OR 4.6. Biologicals did not change the incidence of CMV colitis but decreased the OR of a relapse to 0.13. Clinical parameters such as severely bloody diarrhea, intense microscopic ulcerative damage, and decreased serum tryptophan correlated with detection of CMV. Importantly, persistent decrease of tryptophan was observed in patients with CMV relapse. Furthermore, tryptophan degradation through the kynurenine pathway was increased in CMV-positive patients. DISCUSSION: Taken together, we identify decreased serum tryptophan as a novel potential minimally invasive marker to aid identification of IBD patients with active CMV colitis and at high risk for relapse.

3.
bioRxiv ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39005291

RESUMO

In the distal colon, mucus secreting goblet cells primarily confer protection from luminal microorganisms via generation of a sterile inner mucus layer barrier structure. Bacteria-sensing sentinel goblet cells provide a secondary defensive mechanism that orchestrates mucus secretion in response to microbes that breach the mucus barrier. Previous reports have identified mucus barrier deficiencies in adult germ-free mice, thus implicating a fundamental role for the microbiota in programming mucus barrier generation. In this study, we have investigated the natural neonatal development of the mucus barrier and sentinel goblet cell-dependent secretory responses upon postnatal colonization. Combined in vivo and ex vivo analyses of pre- and post-weaning colonic mucus barrier and sentinel goblet cell maturation demonstrated a sequential microbiota-dependent development of these primary and secondary goblet cell-intrinsic protective functions, with dynamic changes in mucus processing dependent on innate immune signalling via MyD88, and development of functional sentinel goblet cells dependent on the NADPH/Dual oxidase family member Duox2. Our findings therefore identify new mechanisms of microbiota-goblet cell regulatory interaction and highlight the critical importance of the pre-weaning period for the normal development of colonic barrier function.

4.
Sci Rep ; 14(1): 10925, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740826

RESUMO

Blood-based biomarkers that reliably indicate disease activity in the intestinal tract are an important unmet need in the management of patients with IBD. Extracellular vesicles (EVs) are cell-derived membranous microparticles, which reflect the cellular and functional state of their site of site of origin. As ultrasound waves may lead to molecular shifts of EV contents, we hypothesized that application of ultrasound waves on inflamed intestinal tissue in IBD may amplify the inflammation-specific molecular shifts in EVs like altered EV-miRNA expression, which in turn can be detected in the peripheral blood. 26 patients with IBD were included in the prospective clinical study. Serum samples were collected before and 30 min after diagnostic transabdominal ultrasound. Differential miRNA expression was analyzed by sequencing. Candidate inducible EV-miRNAs were functionally assessed in vitro by transfection of miRNA mimics and qPCR of predicted target genes. Serum EV-miRNA concentration at baseline correlated with disease severity, as determined by clinical activity scores and sonographic findings. Three miRNAs (miR-942-5p, mir-5588, mir-3195) were significantly induced by sonography. Among the significantly regulated EV-miRNAs, miR-942-5p was strongly induced in higher grade intestinal inflammation and correlated with clinical activity in Crohn's disease. Prediction of target regulation and transfection of miRNA mimics inferred a role of this EV-miRNA in regulating barrier function in inflammation. Induction of mir-5588 and mir-3195 did not correlate with inflammation grade. This proof-of-concept trial highlights the principle of induced molecular shifts in EVs from inflamed tissue through transabdominal ultrasound. These inducible EVs and their molecular cargo like miRNA could become novel biomarkers for intestinal inflammation in IBD.


Assuntos
Vesículas Extracelulares , Doenças Inflamatórias Intestinais , MicroRNAs , Ultrassonografia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Masculino , Feminino , Adulto , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Doenças Inflamatórias Intestinais/patologia , Pessoa de Meia-Idade , Ultrassonografia/métodos , Estudos Prospectivos , Biomarcadores/metabolismo
5.
EBioMedicine ; 102: 105056, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471395

RESUMO

BACKGROUND: Chronic inflammatory diseases (CIDs) are systems disorders that affect diverse organs including the intestine, joints and skin. The essential amino acid tryptophan (Trp) can be broken down to various bioactive derivatives important for immune regulation. Increased Trp catabolism has been observed in some CIDs, so we aimed to characterise the specificity and extent of Trp degradation as a systems phenomenon across CIDs. METHODS: We used high performance liquid chromatography and targeted mass spectrometry to assess the serum and stool levels of Trp and Trp derivatives. Our retrospective study incorporates both cross-sectional and longitudinal components, as we have included a healthy population as a reference and there are also multiple observations per patient over time. FINDINGS: We found reduced serum Trp levels across the majority of CIDs, and a prevailing negative relationship between Trp and systemic inflammatory marker C-reactive protein (CRP). Notably, serum Trp was low in several CIDs even in the absence of measurable systemic inflammation. Increases in the kynurenine-to-Trp ratio (Kyn:Trp) suggest that these changes result from increased degradation along the kynurenine pathway. INTERPRETATION: Increases in Kyn:Trp indicate the kynurenine pathway as a major route for CID-related Trp metabolism disruption and the specificity of the network changes indicates excessive Trp degradation relative to other proteogenic amino acids. Our results suggest that increased Trp catabolism is a common metabolic occurrence in CIDs that may directly affect systemic immunity. FUNDING: This work was supported by the DFG Cluster of Excellence 2167 "Precision medicine in chronic inflammation" (KA, SSchr, PR, BH, SWa), the BMBF (e:Med Juniorverbund "Try-IBD" 01ZX1915A and 01ZX2215, the e:Med Network iTREAT 01ZX2202A, and GUIDE-IBD 031L0188A), EKFS (2020_EKCS.11, KA), DFG RU5042 (PR, KA), and Innovative Medicines Initiative 2 Joint Undertakings ("Taxonomy, Treatments, Targets and Remission", 831434, "ImmUniverse", 853995, "BIOMAP", 821511).


Assuntos
Doenças Inflamatórias Intestinais , Triptofano , Humanos , Triptofano/metabolismo , Cinurenina , Estudos Retrospectivos , Estudos Transversais , Inflamação/metabolismo , Doença Crônica
6.
iScience ; 27(3): 109173, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38496294

RESUMO

Inflammatory bowel diseases are characterized by the chronic relapsing inflammation of the gastrointestinal tract. While the molecular causality between endoplasmic reticulum (ER) stress and intestinal inflammation is widely accepted, the metabolic consequences of chronic ER stress on the pathophysiology of IBD remain unclear. By using in vitro, in vivo models, and patient datasets, we identified a distinct polarization of the mitochondrial one-carbon metabolism and a fine-tuning of the amino acid uptake in intestinal epithelial cells tailored to support GSH and NADPH metabolism upon ER stress. This metabolic phenotype strongly correlates with IBD severity and therapy response. Mechanistically, we uncover that both chronic ER stress and serine limitation disrupt cGAS-STING signaling, impairing the epithelial response against viral and bacterial infection and fueling experimental enteritis. Consequently, the antioxidant treatment restores STING function and virus control. Collectively, our data highlight the importance of serine metabolism to allow proper cGAS-STING signaling and innate immune responses upon gut inflammation.

7.
Genome Biol ; 25(1): 81, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553769

RESUMO

The use of single-cell technologies for clinical applications requires disconnecting sampling from downstream processing steps. Early sample preservation can further increase robustness and reproducibility by avoiding artifacts introduced during specimen handling. We present FixNCut, a methodology for the reversible fixation of tissue followed by dissociation that overcomes current limitations. We applied FixNCut to human and mouse tissues to demonstrate the preservation of RNA integrity, sequencing library complexity, and cellular composition, while diminishing stress-related artifacts. Besides single-cell RNA sequencing, FixNCut is compatible with multiple single-cell and spatial technologies, making it a versatile tool for robust and flexible study designs.


Assuntos
Genômica , RNA , Humanos , Animais , Camundongos , Fixação de Tecidos/métodos , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , RNA/genética , Genômica/métodos , Análise de Célula Única/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa