RESUMO
The high-affinity/low-capacity system Slc15a2 (PepT2) is responsible for the reuptake of di/tripeptides from the renal proximal tubule, but it also operates in many other tissues and organs. Information regarding PepT2 in teleost fish is limited and, to date, functional data are available from the zebrafish (Danio rerio) only. Here, we report the identification of two slc15a2 genes in the Atlantic salmon (Salmo salar) genome, namely slc15a2a and slc15a2b. The two encoded PepT2 proteins share 87% identity and resemble both structurally and functionally the canonical vertebrate PepT2 system. The mRNA tissue distribution analyses reveal a widespread distribution of slc15a2a transcripts, being more abundant in the brain and gills, while slc15a2b transcripts are mainly expressed in the kidney and the distal part of the gastrointestinal tract. The function of the two transporters was investigated by heterologous expression in Xenopus laevis oocytes and two-electrode voltage-clamp recordings of transport and presteady-state currents. Both PepT2a and PepT2b in the presence of Gly-Gln elicit pH-dependent and Na+ independent inward currents. The biophysical and kinetic analysis of the recorded currents defined the transport properties, confirming that the two Atlantic salmon PepT2 proteins behave as high-affinity/low-capacity transporters. The recent structures and the previous kinetic schemes of rat and human PepT2 qualitatively account for the characteristics of the two Atlantic salmon proteins. This study is the first to report on the functional expression of two PepT2-type transporters that operate in the same vertebrate organism as a result of (a) gene duplication process(es). KEY POINTS: Two slc15a2-type genes, slc15a2a and slc15a2b coding for PepT2-type peptide transporters were found in the Atlantic salmon. slc15a2a transcripts, widely distributed in the fish tissues, are abundant in the brain and gills, while slc15a2b transcripts are mainly expressed in the kidney and distal gastrointestinal tract. Amino acids involved in vertebrate Slc15 transport function are conserved in PepT2a and PepT2b proteins. Detailed kinetic analysis indicates that both PepT2a and PepT2b operate as high-affinity transporters. The kinetic schemes and structures proposed for the mammalian models of PepT2 are suitable to explain the function of the two Atlantic salmon transporters.
Assuntos
Salmo salar , Simportadores , Animais , Cinética , Mamíferos/metabolismo , Oócitos/metabolismo , Ratos , Salmo salar/genética , Salmo salar/metabolismo , Simportadores/genética , Simportadores/metabolismo , Peixe-Zebra/genéticaRESUMO
The Excitatory Amino Acid Transporter 2 (EAAT2) accounts for 80% of brain glutamate clearance and is mainly expressed in astrocytic perisynaptic processes. EAAT2 function is finely regulated by endocytic events, recycling to the plasma membrane and degradation. Noteworthy, deficits in EAAT2 have been associated with neuronal excitotoxicity and neurodegeneration. In this study, we show that EAAT2 trafficking is impaired by the leucine-rich repeat kinase 2 (LRRK2) pathogenic variant G2019S, a common cause of late-onset familial Parkinson's disease (PD). In LRRK2 G2019S human brains and experimental animal models, EAAT2 protein levels are significantly decreased, which is associated with elevated gliosis. The decreased expression of the transporter correlates with its reduced functionality in mouse LRRK2 G2019S purified astrocytic terminals and in Xenopus laevis oocytes expressing human LRRK2 G2019S. In LRRK2 G2019S knock-in mouse brain, the correct surface localization of the endogenous transporter is impaired, resulting in its interaction with a plethora of endo-vesicular proteins. Mechanistically, we report that pathogenic LRRK2 kinase activity delays the recycling of the transporter to the plasma membrane via Rabs inactivation, causing its intracellular re-localization and degradation. Taken together, our results demonstrate that pathogenic LRRK2 interferes with the physiology of EAAT2, pointing to extracellular glutamate overload as a possible contributor to neurodegeneration in PD.
Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson , Sistema X-AG de Transporte de Aminoácidos , Animais , Glutamatos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Mutação , Neurônios/patologia , Doença de Parkinson/patologiaRESUMO
To the SLC6 family belong 20 human transporters that utilize the sodium electrochemical gradient to move biogenic amines, osmolytes, amino acids and related compounds into cells. They are classified into two functional groups, the Neurotransmitter transporters (NTT) and Nutrient amino acid transporters (NAT). Here we summarize how since their first cloning in 1998, the insect (Lepidopteran) Orthologs of the SLC6 family transporters have represented very important tools for investigating functional-structural relationships, mechanism of transport, ion and pH dependence and substate interaction of the mammalian (and human) counterparts.
Assuntos
Proteínas de Transporte , Proteínas de Membrana , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Proteínas de Transporte/metabolismo , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Relação Estrutura-AtividadeRESUMO
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons that leads to progressive paralysis of skeletal muscle. Studies of ALS have revealed defects in expression of acetylcholine receptors (AChRs) in skeletal muscle that occur even in the absence of motor neuron anomalies. The endocannabinoid palmitoylethanolamide (PEA) modified the clinical conditions in one ALS patient, improving muscle force and respiratory efficacy. By microtransplanting muscle membranes from selected ALS patients into Xenopus oocytes, we show that PEA reduces the desensitization of acetylcholine-evoked currents after repetitive neurotransmitter application (i.e., rundown). The same effect was observed using muscle samples from denervated (non-ALS) control patients. The expression of human recombinant α1ß1γδ (γ-AChRs) and α1ß1εδ AChRs (ε-AChRs) in Xenopus oocytes revealed that PEA selectively affected the rundown of ACh currents in ε-AChRs. A clear up-regulation of the α1 subunit in muscle from ALS patients compared with that from non-ALS patients was found by quantitative PCR, but no differential expression was found for other subunits. Clinically, ALS patients treated with PEA showed a lower decrease in their forced vital capacity (FVC) over time as compared with untreated ALS patients, suggesting that PEA can enhance pulmonary function in ALS. In the present work, data were collected from a cohort of 76 ALS patients and 17 denervated patients. Our results strengthen the evidence for the role of skeletal muscle in ALS pathogenesis and pave the way for the development of new drugs to hamper the clinical effects of the disease.
Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Etanolaminas/uso terapêutico , Terapia de Alvo Molecular , Músculo Esquelético/efeitos dos fármacos , Ácidos Palmíticos/uso terapêutico , Receptores Nicotínicos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Amidas , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/transplante , Etanolaminas/farmacologia , Feminino , Humanos , Masculino , Microinjeções , Pessoa de Meia-Idade , Denervação Muscular , Músculo Esquelético/ultraestrutura , Junção Neuromuscular/fisiopatologia , Oócitos , Ácidos Palmíticos/farmacologia , Receptores Nicotínicos/fisiologia , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Método Simples-Cego , Xenopus laevisRESUMO
Epilepsy is one of the most common chronic neurological diseases, and its pharmacological treatment holds great importance for both physicians and national authorities, especially considering the high proportion of drug-resistant patients (about 30%). Lacosamide (LCM) is an effective and well-tolerated new-generation antiepileptic drug (AED), currently licensed as add-on therapy for partial-onset seizures. However, LCM mechanism of action is still a matter of debate, although its effect on the voltage sensitive sodium channels is by far the most recognized. This study aimed to retrospectively analyze a cohort of 157 drug-resistant patients treated with LCM to describe the most common and effective therapeutic combinations and to investigate if the LCM can affect also GABAA-mediated neurotransmission as previously shown for levetiracetam (LEV). In our cohort, LEV resulted the compound most frequently associated with LCM in the responder subgroup. We therefore translated this clinical observation into the laboratory bench by taking advantage of the technique of "membrane micro-transplantation" in Xenopus oocytes and electrophysiological approaches to study human GABAA-evoked currents. In cortical brain tissues from refractory epileptic patients, we found that LCM reduces the use-dependent GABA impairment (i.e., "rundown") that it is considered one of the specific hallmarks of drug-resistant epilepsies. Notably, in line with our clinical observations, we found that the co-treatment with subthreshold concentrations of LCM and LEV, which had no effect on GABAA currents on their own, reduced GABA impairment in drug-resistant epileptic patients, and this effect was blocked by PKC inhibitors. Our findings demonstrate, for the first time, that LCM targets GABAA receptors and that it can act synergistically with LEV, improving the GABAergic function. This novel mechanism might contribute to explain the clinical efficacy of LCM-LEV combination in several refractory epileptic patients.
Assuntos
Anticonvulsivantes/administração & dosagem , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Lacosamida/administração & dosagem , Levetiracetam/administração & dosagem , Receptores de GABA-A/fisiologia , Adulto , Idoso , Animais , Anticonvulsivantes/sangue , Estudos de Coortes , Epilepsia Resistente a Medicamentos/sangue , Epilepsia Resistente a Medicamentos/diagnóstico , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Lacosamida/sangue , Levetiracetam/sangue , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Xenopus , Adulto JovemRESUMO
OBJECTIVE: Dravet syndrome is a rare neurodevelopmental disease, characterized by general cognitive impairment and severe refractory seizures. The majority of patients carry the gene mutation SCN1A, leading to a defective sodium channel that contributes to pathogenic brain excitability. A γ-aminobutyric acid (GABAergic) impairment, as in other neurodevelopmental diseases, has been proposed as an additional mechanism, suggesting that seizures could be alleviated by GABAergic therapies. However, up to now the physiological mechanisms underlying the GABAergic dysfunction in Dravet syndrome are still unknown due to the scarce availability of this brain tissue. Here we studied, for the first time, human GABAA -evoked currents using cortical brain tissue from Dravet syndrome patients. METHODS: We transplanted in Xenopus oocytes cell membranes obtained from brain tissues of autopsies of Dravet syndrome patients, tuberous sclerosis complex patients as a pathological comparison, and age-matched controls. Additionally, experiments were performed on oocytes expressing human α1ß2γ2 and α1ß2 GABAA receptors. GABAA currents were recorded using the two-microelectrodes voltage-clamp technique. Quantitative real-time polymerase chain reaction, immunohistochemistry, and double-labeling techniques were carried out on the same tissue samples. RESULTS: We found (1) a decrease in GABA sensitivity in Dravet syndrome compared to controls, which was related to an increase in α4- relative to α1-containing GABAA receptors; (2) a shift of the GABA reversal potential toward more depolarizing values in Dravet syndrome, and a parallel increase of the chloride transporters NKCC1/KCC2 expression ratio; (3) an increase of GABAA currents induced by low doses of cannabidiol both in Dravet syndrome and tuberous sclerosis complex comparable to that induced by a classical benzodiazepine, flunitrazepam, that still persists in γ-less GABAA receptors. SIGNIFICANCE: Our study indicates that a dysfunction of the GABAergic system, considered as a feature of brain immaturity, together with defective sodium channels, can contribute to a general reduction of inhibitory efficacy in Dravet brain, suggesting that GABAA receptors could be a target for new therapies.
Assuntos
Córtex Cerebral/patologia , Epilepsias Mioclônicas/patologia , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adulto , Animais , Anticonvulsivantes/farmacologia , Canabidiol/farmacologia , Membrana Celular/transplante , Córtex Cerebral/ultraestrutura , Criança , Pré-Escolar , Estimulação Elétrica , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/metabolismo , Feminino , Humanos , Larva , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Xenopus , Ácido gama-Aminobutírico/farmacologiaRESUMO
Tuberous sclerosis complex (TSC) is a rare multi-system genetic disease characterized by several neurological disorders, the most common of which is the refractory epilepsy caused by highly epileptogenic cortical lesions. Previous studies suggest an alteration of GABAergic and glutamatergic transmission in TSC brain indicating an unbalance of excitation/inhibition that can explain, at least in part, the high incidence of epilepsy in these patients. Here we investigate whether TSC cortical tissues could retain GABAA and AMPA receptors at early stages of human brain development thus contributing to the generation and recurrence of seizures. Given the limited availability of pediatric human brain specimens, we used the microtransplantation method of injecting Xenopus oocytes with membranes from TSC cortical tubers and control brain tissues. Moreover, qPCR was performed to investigate the expression of GABAA and AMPA receptor subunits (GABAA α1-5, ß3, γ2, δ; GluA1, GluA2) and cation chloride co-transporters NKCC1 and KCC2. The evaluation of nine human cortical brain samples, from 15 gestation weeks to 15years old, showed a progressive shift towards more hyperpolarized GABAA reversal potential (EGABA). This shift was associated with a differential expression of the chloride cotransporters NKCC1 and KCC2. Furthermore, the GluA1/GluA2 mRNA ratio of expression paralleled the development process. On the contrary, in oocytes micro-transplanted with epileptic TSC tuber tissue from seven patients, neither the GABAA reversal potential nor the GluA1/GluA2 expression showed similar developmental changes. Our data indicate for the first time, that in the same cohort of TSC patients, the pattern of both GABAAR and GluA1/GluA2 functions retains features that are typical of an immature brain. These observations support the potential contribution of altered receptor function to the epileptic disorder of TSC and may suggest novel therapeutic approaches. Furthermore, our findings strengthen the novel hypothesis that other developmental brain diseases can share the same hallmarks of immaturity leading to intractable seizures.
Assuntos
Encéfalo/crescimento & desenvolvimento , Epilepsia/etiologia , Esclerose Tuberosa/patologia , Esclerose Tuberosa/fisiopatologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias/patologia , Criança , Estudos de Coortes , Feminino , Humanos , Oócitos , Receptores de GABA-A/metabolismo , Convulsões/fisiopatologia , Simportadores/metabolismo , Esclerose Tuberosa/genética , XenopusRESUMO
Temporal lobe epilepsy (TLE) is the most prevalent form of adult focal onset epilepsy often associated with drug-resistant seizures. Numerous studies suggest that neuroinflammatory processes are pathologic hallmarks of both experimental and human epilepsy. In particular, the interleukin (IL)-1ß/IL-1 receptor type 1 (R1) axis is activated in epileptogenic tissue, where it contributes significantly to the generation and recurrence of seizures in animal models. In this study, we investigated whether IL-1ß affects the GABA-evoked currents (I(GABA)) in TLE tissue from humans. Given the limited availability of fresh human brain specimens, we used the "microtransplantation" method of injecting Xenopus oocytes with membranes from surgically resected hippocampal and cortical tissue from 21 patients with TLE and hippocampal sclerosis (HS), hippocampal tissue from five patients with TLE without HS, and autoptic and surgical brain specimens from 15 controls without epilepsy. We report the novel finding that pathophysiological concentrations of IL-1ß decreased the I(GABA) amplitude by up to 30% in specimens from patients with TLE with or without HS, but not in control tissues. This effect was reproduced by patch-clamp recordings on neurons in entorhinal cortex slices from rats with chronic epilepsy, and was not observed in control slices. In TLE specimens from humans, the IL-1ß effect was mediated by IL-1R1 and PKC. We also showed that IL-1R1 and IRAK1, the proximal kinase mediating the IL-1R1 signaling, are both up-regulated in the TLE compared with control specimens, thus supporting the idea that the IL-1ß/IL-R1 axis is activated in human epilepsy. Our findings suggest a novel mechanism possibly underlying the ictogenic action of IL-1ß, thus suggesting that this cytokine contributes to seizure generation in human TLE by reducing GABA-mediated neurotransmission.
Assuntos
Córtex Cerebral/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Interleucina-1beta/metabolismo , Receptores de GABA-A/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Córtex Cerebral/patologia , Córtex Cerebral/cirurgia , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Feminino , GABAérgicos/administração & dosagem , Hipocampo/patologia , Hipocampo/cirurgia , Humanos , Interleucina-1beta/administração & dosagem , Ácido Caínico , Masculino , Pessoa de Meia-Idade , Oócitos , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos , Transplante Heterólogo/métodos , Xenopus , Adulto JovemRESUMO
Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motor neurons leading to muscle paralysis. Research in transgenic mice suggests that the muscle actively contributes to the disease onset, but such studies are difficult to pursue in humans and in vitro models would represent a good starting point. In this work we show that tiny amounts of muscle from ALS or from control denervated muscle, obtained by needle biopsy, are amenable to functional characterization by two different technical approaches: "microtransplantation" of muscle membranes into Xenopus oocytes and culture of myogenic satellite cells. Acetylcholine (ACh)-evoked currents and unitary events were characterized in oocytes and multinucleated myotubes. We found that ALS acetylcholine receptors (AChRs) retain their native physiological characteristics, being activated by ACh and nicotine and blocked by α-bungarotoxin (α-BuTX), d-tubocurarine (dTC), and galantamine. The reversal potential of ACh-evoked currents and the unitary channel behavior were also typical of normal muscle AChRs. Interestingly, in oocytes injected with muscle membranes derived from ALS patients, the AChRs showed a significant decrease in ACh affinity, compared with denervated controls. Finally, riluzole, the only drug currently used against ALS, reduced, in a dose-dependent manner, the ACh-evoked currents, indicating that its action remains to be fully characterized. The two methods described here will be important tools for elucidating the role of muscle in ALS pathogenesis and for developing drugs to counter the effects of this disease.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Músculos/metabolismo , Receptores Colinérgicos/metabolismo , Acetilcolina/farmacologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Animais , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Músculos/efeitos dos fármacos , Músculos/fisiopatologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Receptores Nicotínicos/fisiologia , Riluzol/farmacologia , Riluzol/uso terapêutico , XenopusRESUMO
Among the most prevalent neurological disorders, epilepsy affects about 1% of the population worldwide. We previously found, using human epileptic tissues, that GABAergic neurotransmission impairment is a key mechanism that drives the pathological phenomena that ultimately lead to generation and recurrence of seizures. Using both a "microtransplantation technique" and synaptosomes preparations from drug-resistant temporal lobe epilepsies (TLEs), we used the technique of two-electrode voltage clamp to record GABA-evoked currents, focusing selectively on the synaptic "fast inhibition" mediated by low-affinity GABAA receptors. Here, we report that the use-dependent GABA current desensitization (i.e., GABA rundown, which is evoked by applying to the cells consecutive pulses of GABA, at high concentration), which is a distinguishing mark of TLE, is mainly dependent on a dysfunction that affects synaptic GABAA receptors. In addition, using the same approaches, we recorded a depolarized GABA reversal potential in synaptosomes samples from the human epileptic subicula of TLE patients. These results, which confirm previous experiments using total membranes, suggest an altered chloride homeostasis in the synaptic area. Finally, the lack of a Zn2+ block of GABA-evoked currents using the synaptosomes supports the enrichment of "synaptic fast inhibitory" GABAA receptors in this preparation. Altogether, our findings suggest a pathophysiological role of low-affinity GABAA receptors at the synapse, especially during the fast and repetitive GABA release underlying recurrent seizures.
RESUMO
PURPOSE: The chemokine fractalkine/CX3CL1 and its receptor CX3CR1 are widely expressed in the central nervous system (CNS). Recent evidence showed that CX3CL1 participates in inflammatory responses that are common features of CNS disorders, such as epilepsy. Mesial temporal lobe epilepsy (MTLE) is the prevalent form of focal epilepsy in adults, and hippocampal sclerosis (HS) represents the most common underlying pathologic abnormality, as demonstrated at autopsy and postresection studies. Relevant features of MTLE are a characteristic pattern of neuronal loss, as are astrogliosis and microglia activation. Several factors affect epileptogenesis in patients with MTLE, including a lack of γ-aminobutyric acid (GABA)ergic inhibitory efficacy. Therefore, experiments were designed to investigate whether, in MTLE brain tissues, CX3CL1 may influence GABAA receptor (GABAA R) mediated transmission, with a particular focus on the action of CX3CL1 on the use-dependent decrease (rundown) of the GABA-evoked currents (IGABA ), a feature underlying the reduction of GABAergic function in epileptic tissue. METHODS: Patch-clamp recordings were obtained from cortical pyramidal neurons in slices from six MTLE patients after surgery. Alternatively, the cell membranes from epileptic brain tissues of 17 MTLE patients or from surgical samples and autopsies of nonepileptic patients were microtransplanted into Xenopus oocytes, and IGABA were recorded using the standard two-microelectrode voltage-clamp technique. Immunohistochemical staining and double-labeling studies were carried out on the same brain tissues to analyze CX3CR1 expression. KEY FINDINGS: In native pyramidal neurons from cortical slices of patients with MTLE, CX3CL1 reduced IGABA rundown and affected the recovery of IGABA amplitude from rundown. These same effects were confirmed in oocytes injected with cortical and hippocampal MTLE membranes, whereas CX3CL1 did not influence IGABA in oocytes injected with nonepileptic tissues. Consistent with a specific effect of CX3CL1 on tissues from patients with MTLE, CX3CR1 immunoreactivity was higher in MTLE sclerotic hippocampi than in control tissues, with a prominent expression in activated microglial cells. SIGNIFICANCE: These findings indicate a role for CX3CL1 in MTLE, supporting recent evidence on the relevance of brain inflammation in human epilepsies. Our data demonstrate that in MTLE tissues the reduced GABAergic function can be modulated by CX3CL1. The increased CX3CR1 expression in microglia and the modulation by CX3CL1 of GABAergic currents in human epileptic brain suggests new therapeutic approaches for drug-resistant epilepsies based on the evidence that the propagation of seizures can be influenced by inflammatory processes.
Assuntos
Quimiocina CX3CL1/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Receptores de GABA-A/fisiologia , Potenciais de Ação/fisiologia , Adulto , Animais , Western Blotting , Encéfalo/fisiopatologia , Membrana Celular/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oócitos/fisiologia , Células Piramidais/fisiologia , Xenopus laevis , Adulto JovemRESUMO
Refractory temporal lobe epilepsy (TLE) is associated with a dysfunction of inhibitory signaling mediated by GABA(A) receptors. In particular, the use-dependent decrease (run-down) of the currents (I(GABA)) evoked by the repetitive activation of GABA(A) receptors is markedly enhanced in hippocampal and cortical neurons of TLE patients. Understanding the role of I(GABA) run-down in the disease, and its mechanisms, may allow development of medical alternatives to surgical resection, but such mechanistic insights are difficult to pursue in surgical human tissue. Therefore, we have used an animal model (pilocarpine-treated rats) to identify when and where the increase in I(GABA) run-down occurs in the natural history of epilepsy. We found: (i) that the increased run-down occurs in the hippocampus at the time of the first spontaneous seizure (i.e., when the diagnosis of epilepsy is made), and then extends to the neocortex and remains constant in the course of the disease; (ii) that the phenomenon is strictly correlated with the occurrence of spontaneous seizures, because it is not observed in animals that do not become epileptic. Furthermore, initial exploration of the molecular mechanism disclosed a relative increase in alpha4-, relative to alpha1-containing GABA(A) receptors, occurring at the same time when the increased run-down appears, suggesting that alterations in the molecular composition of the GABA receptors may be responsible for the occurrence of the increased run-down. These observations disclose research opportunities in the field of epileptogenesis that may lead to a better understanding of the mechanism whereby a previously normal tissue becomes epileptic.
Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiologia , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Eletrofisiologia , Fluoresceínas , Imunofluorescência , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Oócitos/metabolismo , Compostos Orgânicos , Pilocarpina , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/fisiologia , XenopusRESUMO
The role of betaine in the liver and kidney has been well documented, even from the cellular and molecular point of view. Despite literature reporting positive effects of betaine supplementation in Alzheimer's, Parkinson's and schizophrenia, the role and function of betaine in the brain are little studied and reviewed. Beneficial effects of betaine in neurodegeneration, excitatory and inhibitory imbalance and against oxidative stress in the central nervous system (CNS) have been collected and analysed to understand the main role of betaine in the brain. There are many 'dark' aspects needed to complete the picture. The understanding of how this osmolyte is transported across neuron and glial cells is also controversial, as the expression levels and functioning of the known protein capable to transport betaine expressed in the brain, betaine-GABA transporter 1 (BGT-1), is itself not well clarified. The reported actions of betaine beyond BGT-1 related to neuronal degeneration and memory impairment are the focus of this work. With this review, we underline the scarcity of detailed molecular and cellular information about betaine action. Consequently, the requirement of detailed focus on and study of the interaction of this molecule with CNS components to sustain the therapeutic use of betaine.
RESUMO
Riluzole, the only drug available against amyotrophic lateral sclerosis (ALS), has recently been shown to block muscle ACh receptors (AChRs), raising concerns about possible negative side-effects on neuromuscular transmission in treated patients. In this work we studied riluzole's impact on the function of muscle AChRs in vitro and on neuromuscular transmission in ALS patients, using electrophysiological techniques. Human recombinant AChRs composed of α(1)ß(1)δ subunits plus the γ or ε subunit (γ- or ε-AChR) were expressed in HEK cells or Xenopus oocytes. In both preparations, riluzole at 0.5 µm, a clinically relevant concentration, reversibly reduced the amplitude and accelerated the decay of ACh-evoked current if applied before coapplication with ACh. The action on γ-AChRs was more potent and faster than on ε-AChRs. In HEK outside-out patches, riluzole-induced block of macroscopic ACh-evoked current gradually developed during the initial milliseconds of ACh presence. Single channel recordings in HEK cells and in human myotubes from ALS patients showed that riluzole prolongs channel closed time, but has no effect on channel conductance and open duration. Finally, compound muscle action potentials (CMAPs) evoked by nerve stimulation in ALS patients remained unaltered after a 1 week suspension of riluzole treatment. These data indicate that riluzole, while apparently safe with regard to synaptic transmission, may affect the function of AChRs expressed in denervated muscle fibres of ALS patients, with biological consequences that remain to be investigated.
Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Antagonistas Colinérgicos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores Colinérgicos/fisiologia , Riluzol/farmacologia , Idoso , Animais , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Xenopus laevisRESUMO
We previously found that the endogenous anticonvulsant adenosine, acting through A(2A) and A(3) adenosine receptors (ARs), alters the stability of currents (I(GABA)) generated by GABA(A) receptors expressed in the epileptic human mesial temporal lobe (MTLE). Here we examined whether ARs alter the stability (desensitization) of I(GABA) expressed in focal cortical dysplasia (FCD) and in periglioma epileptic tissues. The experiments were performed with tissues from 23 patients, using voltage-clamp recordings in Xenopus oocytes microinjected with membranes isolated from human MTLE and FCD tissues or using patch-clamp recordings of pyramidal neurons in epileptic tissue slices. On repetitive activation, the epileptic GABA(A) receptors revealed instability, manifested by a large I(GABA) rundown, which in most of the oocytes (approximately 70%) was obviously impaired by the new A(2A) antagonists ANR82, ANR94, and ANR152. In most MTLE tissue-microtransplanted oocytes, a new A(3) receptor antagonist (ANR235) significantly improved I(GABA) stability. Moreover, patch-clamped pyramidal neurons from human neocortical slices of periglioma epileptic tissues exhibited altered I(GABA) rundown on ANR94 treatment. Our findings indicate that antagonizing A(2A) and A(3) receptors increases the I(GABA) stability in different epileptic tissues and suggest that adenosine derivatives may offer therapeutic opportunities in various forms of human epilepsy.
Assuntos
Receptor A2A de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Receptores de GABA-A/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Antagonistas do Receptor A2 de Adenosina , Antagonistas do Receptor A3 de Adenosina , Animais , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Feminino , Humanos , Técnicas In Vitro , Malformações do Desenvolvimento Cortical/metabolismo , Oócitos/metabolismo , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Xenopus laevisRESUMO
After 50 years, the heterologous expression of proteins in Xenopus laevis oocytes is still essential in many research fields. New approaches and revised protocols, but also classical methods, such as the two-electrode voltage clamp, are applied in studying membrane transporters. New and old methods for investigating the activity and the expression of Solute Carriers (SLC) are reviewed, and the kinds of experiment that are still useful to perform with this kind of cell are reported. Xenopus laevis oocytes at the full-grown stage have a highly efficient biosynthetic apparatus that correctly targets functional proteins at the defined compartment. This small protein factory can produce, fold, and localize almost any kind of wild-type or recombinant protein; some tricks are required to obtain high expression and to verify the functionality. The methodologies examined here are mainly related to research in the field of membrane transporters. This work is certainly not exhaustive; it has been carried out to be helpful to researchers who want to quickly find suggestions and detailed indications when investigating the functionality and expression of the different members of the solute carrier families.
RESUMO
PURPOSE: Several factors contribute to epileptogenesis in patients with brain tumors, including reduced γ-aminobutyric acid (GABA)ergic inhibition. In particular, changes in Cl(-) homeostasis in peritumoral microenvironment, together with alterations of metabolism, are key processes leading to epileptogenesis in patients afflicted by glioma. It has been recently proposed that alterations of Cl(-) homeostasis could be involved in tumor cell migration and metastasis formation. In neurons, the regulation of intracellular Cl(-) concentration ([Cl(-) ](i) ) is mediated by NKCC1 and KCC2 transporters: NKCC1 increases while KCC2 decreases [Cl(-) ](i) . Experiments were thus designed to investigate whether, in human epileptic peritumoral cortex, alterations in the balance of NKCC1 and KCC2 activity may decrease the hyperpolarizing effects of GABA, thereby contributing to epileptogenesis in human brain tumors. METHODS: Membranes from peritumoral cortical tissues of epileptic patients afflicted by gliomas (from II to IV WHO grade) and from cortical tissues of nonepileptic patients were injected into Xenopus oocytes leading to the incorporation of functional GABA(A) receptors. The GABA-evoked currents were recorded using standard two-microelectrode voltage-clamp technique. In addition, immunoblot analysis and immunohistochemical staining were carried out on membranes and tissues from the same patients. KEY FINDINGS: We found that in oocytes injected with epileptic peritumoral cerebral cortex, the GABA-evoked currents had a more depolarized reversal potential (E(GABA) ) compared to those from nonepileptic healthy cortex. This difference of E(GABA) was abolished by the NKCC1 blocker bumetanide or unblocking of KCC2 with the Zn(2+) chelator TPEN. Moreover, Western blot analysis revealed an increased expression of NKCC1, and more modestly, of KCC2 transporters in epileptic peritumoral tissues compared to nonepileptic control tissues. In addition, NKCC1 immunoreactivity was strongly increased in peritumoral cortex with respect to nonepileptic cortex, with a prominent expression in neuronal cells. SIGNIFICANCE: We report that the positive shift of E(GABA) in epileptic peritumoral human cortex is due to an altered expression of NKCC1 and KCC2, perturbing Cl(-) homeostasis, which might lead to a consequent reduction in GABAergic inhibition. These findings point to a key role of Cl(-) transporters KCC2 and NKCC1 in tumor-related epilepsy, suggesting a more specific drug therapy and surgical approaches for the epileptic patients afflicted by brain tumors.
Assuntos
Córtex Cerebral/metabolismo , Epilepsia/patologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adulto , Idoso , Animais , Biofísica , Neoplasias Encefálicas/complicações , Estimulação Elétrica , Epilepsia/etiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/complicações , Humanos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Microinjeções/métodos , Pessoa de Meia-Idade , Oócitos , Técnicas de Patch-Clamp , Receptores de GABA-A/metabolismo , Membro 2 da Família 12 de Carreador de Soluto , Xenopus , Adulto Jovem , Ácido gama-Aminobutírico/farmacologia , Cotransportadores de K e Cl-RESUMO
We examined how the endogenous anticonvulsant adenosine might influence gamma-aminobutyric acid type A (GABA(A)) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 microM), GABA(A) receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABA(A)-current (I(GABA)) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced I(GABA) run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated I(GABA) run-down in approximately 40% and approximately 20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 microM) potentiated I(GABA) run-down but only in approximately 20% of tested oocytes. CGS15943 administration again decreased I(GABA) run-down in patch-clamped neurons from either human or rat neocortex slices. I(GABA) run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABA(A)-receptor stability is tonically influenced by A2A but not by A1 receptors. I(GABA) run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2-A3 receptors alter the stability of GABA(A) receptors, which could offer therapeutic opportunities.
Assuntos
Adenosina/metabolismo , Anticonvulsivantes/metabolismo , Epilepsia/metabolismo , Antagonistas de Receptores Purinérgicos P1 , Receptores de GABA-A/metabolismo , Adenosina/farmacologia , Adenosina Desaminase/farmacologia , Adulto , Animais , Anticonvulsivantes/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Feminino , Agonistas de Receptores de GABA-A , Humanos , Masculino , Neurônios/metabolismo , Oócitos , Tratos Piramidais/metabolismo , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Ratos , Triazóis/farmacologia , Xantinas/farmacologia , Xenopus , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologiaRESUMO
Membrane proteins are involved in different physiological functions and are the target of pharmaceutical and abuse drugs. Xenopus laevis oocytes provide a powerful heterologous expression system for functional studies of these proteins. Typical experiments investigate transport using electrophysiology and radiolabeled uptake. A two-electrode voltage clamp is suitable only for electrogenic proteins, and uptake measurements require the existence of radiolabeled substrates and adequate laboratory facilities.Recently, Dictyostelium discoideum Nramp1 and NrampB were characterized using multidisciplinary approaches. NrampB showed no measurable electrogenic activity, and it was investigated in Xenopus oocytes by acquiring confocal images of the quenching of injected fluorophore calcein.This method is adequate to measure the variation in emitted fluorescence, and thus transporter activity indirectly, but requires long experimental procedures to collect statistically consistent data. Considering that optimal expression of heterologous proteins lasts for 48-72 h, a slow acquiring process requires the use of more than one batch of oocytes to complete the experiments. Here, a novel approach to measure substrate uptake is reported. Upon injection of a fluorophore, oocytes were incubated with the substrate and the transport activity measured, evaluating fluorescence quenching in a microplate reader. The technique permits the testing of tens of oocytes in different experimental conditions simultaneously, and thus the collection of significant statistical data for each batch, saving time and animals.The method was tested with different metal transporters (SLC11), DMT1, DdNramp1, and DdNrampB, and verified with the peptide transporter PepT1 (SLC15). Comparison with traditional methods (uptake, two-electrode voltage clamp) and with quenching images acquired by fluorescence microscopy confirmed its efficacy.
Assuntos
Fenômenos Eletrofisiológicos , Proteínas de Membrana Transportadoras/metabolismo , Técnicas de Patch-Clamp/métodos , Animais , Transporte Biológico , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Dictyostelium/metabolismo , Feminino , Fluoresceínas/farmacocinética , Corantes Fluorescentes/farmacocinética , Potenciais da Membrana , Microscopia de Fluorescência , Oócitos/química , Oócitos/metabolismo , Xenopus laevisRESUMO
A study was made of the "rundown" of GABA(A) receptors, microtransplanted to Xenopus oocytes from surgically resected brain tissues of patients afflicted with drug-resistant human mesial temporal lobe epilepsy (mTLE). Cell membranes, isolated from mTLE neocortex specimens, were injected into frog oocytes that rapidly incorporated functional GABA(A) receptors. Upon repetitive activation with GABA (1 mM), "epileptic" GABA(A) receptors exhibited a GABA(A)-current (I(GABA)) rundown that was significantly enhanced by Zn(2+) (=250 microM), and practically abolished by the high-affinity GABA(A) receptor inverse agonist SR95531 (gabazine; 2.5-25 microM). Conversely, I(GABA) generated by "control" GABA(A) receptors microtransplanted from nonepileptic temporal lobe, lesional TLE, or authoptic disease-free tissues remained stable during repetitive stimulation, even in oocytes treated with Zn(2+). We conclude that rundown of mTLE epileptic receptors depends on the presence of "phasic GABA(A) receptors" that have low sensitivity to antagonism by Zn(2+). Additionally, we found that GABA(A) receptors, microtransplanted from the cerebral cortex of adult rats exhibiting recurrent seizures, caused by pilocarpine-induced status epilepticus, showed greater rundown than control tissue, an event also occurring in patch-clamped rat pyramidal neurons. Rundown of epileptic rat receptors resembled that of human mTLE receptors, being enhanced by Zn(2+) (40 microM) and sensitive to the antiepileptic agent levetiracetam, the neurotrophin brain-derived neurotrophic factor, and the phosphatase blocker okadaic acid. Our findings point to the rundown of GABA(A) receptors as a hallmark of TLE and suggest that modulating tonic and phasic mTLE GABA(A) receptor activity may represent a useful therapeutic approach to the disease.