RESUMO
To address antigen escape and loss of T-cell functionality, we report a phase I clinical trial (NCT04007029) evaluating autologous naive and memory T (TN/MEM) cells engineered to express a bispecific anti-CD19/CD20 chimeric antigen receptor (CAR; CART19/20) for patients with relapsed/refractory non-Hodgkin lymphoma (NHL), with safety as the primary endpoint. Ten patients were treated with 36 × 106 to 165 × 106 CART19/20 cells. No patient experienced neurotoxicity of any grade or over grade 1 cytokine release syndrome. One case of dose-limiting toxicity (persistent cytopenia) was observed. Nine of 10 patients achieved objective response [90% overall response rate (ORR)], with seven achieving complete remission [70% complete responses (CR) rate]. One patient relapsed after 18 months in CR but returned to CR after receiving a second dose of CART19/20 cells. Median progression-free survival was 18 months and median overall survival was not reached with a 17-month median follow-up. In conclusion, CART19/20 TN/MEM cells are safe and effective in patients with relapsed/refractory NHL, with durable responses achieved at low dosage levels. SIGNIFICANCE: Autologous CD19/CD20 bispecific CAR-T cell therapy generated from TN/MEM cells for patients with NHL is safe (no neurotoxicity, maximum grade 1 cytokine release syndrome) and demonstrates strong efficacy (90% ORR, 70% CR rate) in a first-in-human, phase I dose-escalation trial. This article is highlighted in the In This Issue feature, p. 517.
Assuntos
Linfoma não Hodgkin , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/terapia , Células T de Memória , Linfoma não Hodgkin/terapia , Imunoterapia Adotiva/efeitos adversos , Antígenos CD19RESUMO
Wound reepithelialization is an evolutionarily conserved process in which skin cells migrate as sheets to heal the breach and is critical to prevent infection but impaired in chronic wounds. Integrin heterodimers mediate attachment between epithelia and underlying extracellular matrix and also act in large signaling complexes. The complexity of the mammalian wound environment and evident redundancy among integrins has impeded determination of their specific contributions to reepithelialization. Taking advantage of the genetic tools and smaller number of integrins in Drosophila, we undertook a systematic in vivo analysis of integrin requirements in the reepithelialization of skin wounds in the larva. We identify αPS2-ßPS and αPS3-ßPS as the crucial integrin dimers and talin as the only integrin adhesion component required for reepithelialization. The integrins rapidly accumulate in a JNK-dependent manner in a few rows of cells surrounding a wound. Intriguingly, the integrins localize to the distal margin in these cells, instead of the frontal or lamellipodial distribution expected for proteins providing traction and recruit nonmuscle myosin II to the same location. These findings indicate that signaling roles of integrins may be important for epithelial polarization around wounds and lay the groundwork for using Drosophila to better understand integrin contributions to reepithelialization.