Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(18): 3469-3481.e7, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39236719

RESUMO

Topoisomerase 1 cleavage complexes (Top1-ccs) comprise a DNA-protein crosslink and a single-stranded DNA break that can significantly impact the DNA replication machinery (replisome). Consequently, inhibitors that trap Top1-ccs are used extensively in research and clinical settings to generate DNA replication stress, yet how the replisome responds upon collision with a Top1-cc remains obscure. By reconstituting collisions between budding yeast replisomes, assembled from purified proteins, and site-specific Top1-ccs, we have uncovered mechanisms underlying replication fork stalling and collapse. We find that stalled replication forks are surprisingly stable and that their stability is influenced by the template strand that Top1 is crosslinked to, the fork protection complex proteins Tof1-Csm3 (human TIMELESS-TIPIN), and the convergence of replication forks. Moreover, nascent-strand mapping and cryoelectron microscopy (cryo-EM) of stalled forks establishes replisome remodeling as a key factor in the initial response to Top1-ccs. These findings have important implications for the use of Top1 inhibitors in research and in the clinic.


Assuntos
Replicação do DNA , DNA Topoisomerases Tipo I , Proteínas de Ligação a DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Microscopia Crioeletrônica , DNA Fúngico/metabolismo , DNA Fúngico/genética , Quebras de DNA de Cadeia Simples , Humanos
2.
Mol Cell ; 84(18): 3423-3437.e8, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39270644

RESUMO

To maintain the nucleosome organization of transcribed genes, ATP-dependent chromatin remodelers collaborate with histone chaperones. Here, we show that at the 5' ends of yeast genes, RNA polymerase II (RNAPII) generates hexasomes that occur directly adjacent to nucleosomes. The resulting hexasome-nucleosome complexes are then resolved by Chd1. We present two cryoelectron microscopy (cryo-EM) structures of Chd1 bound to a hexasome-nucleosome complex before and after restoration of the missing inner H2A/H2B dimer by FACT. Chd1 uniquely interacts with the complex, positioning its ATPase domain to shift the hexasome away from the nucleosome. In the absence of the inner H2A/H2B dimer, its DNA-binding domain (DBD) packs against the ATPase domain, suggesting an inhibited state. Restoration of the dimer by FACT triggers a rearrangement that displaces the DBD and stimulates Chd1 remodeling. Our results demonstrate how chromatin remodelers interact with a complex nucleosome assembly and suggest how Chd1 and FACT jointly support transcription by RNAPII.


Assuntos
Montagem e Desmontagem da Cromatina , Microscopia Crioeletrônica , Proteínas de Ligação a DNA , Proteínas de Grupo de Alta Mobilidade , Histonas , Nucleossomos , RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcrição Gênica , Fatores de Elongação da Transcrição , Nucleossomos/metabolismo , Nucleossomos/genética , Nucleossomos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Histonas/metabolismo , Histonas/genética , Ligação Proteica , Modelos Moleculares , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética
3.
Nucleic Acids Res ; 49(1): 504-518, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33300032

RESUMO

Mitomycin repair factor A represents a family of DNA helicases that harbor a domain of unknown function (DUF1998) and support repair of mitomycin C-induced DNA damage by presently unknown molecular mechanisms. We determined crystal structures of Bacillus subtilis Mitomycin repair factor A alone and in complex with an ATP analog and/or DNA and conducted structure-informed functional analyses. Our results reveal a unique set of auxiliary domains appended to a dual-RecA domain core. Upon DNA binding, a Zn2+-binding domain, encompassing the domain of unknown function, acts like a drum that rolls out a canopy of helicase-associated domains, entrapping the substrate and tautening an inter-domain linker across the loading strand. Quantification of DNA binding, stimulated ATPase and helicase activities in the wild type and mutant enzyme variants in conjunction with the mode of coordination of the ATP analog suggest that Mitomycin repair factor A employs similar ATPase-driven conformational changes to translocate on DNA, with the linker ratcheting through the nucleotides like a 'skipping rope'. The electrostatic surface topology outlines a likely path for the displaced DNA strand. Our results reveal unique molecular mechanisms in a widespread family of DNA repair helicases linked to bacterial antibiotics resistance.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA , Modelos Químicos , Nucleosídeo-Trifosfatase/metabolismo , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , DNA/metabolismo , Dano ao DNA , DNA Helicases/química , DNA Helicases/classificação , Resistência Microbiana a Medicamentos , Modelos Moleculares , Proteínas Motores Moleculares/metabolismo , Família Multigênica , Nucleosídeo-Trifosfatase/classificação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Eletricidade Estática , Relação Estrutura-Atividade , Zinco/metabolismo
4.
Nat Struct Mol Biol ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112807

RESUMO

During chromosome replication, the nascent leading strand is synthesized by DNA polymerase epsilon (Pol ε), which associates with the sliding clamp processivity factor proliferating cell nuclear antigen (PCNA) to form a processive holoenzyme. For high-fidelity DNA synthesis, Pol ε relies on nucleotide selectivity and its proofreading ability to detect and excise a misincorporated nucleotide. Here, we present cryo-electron microscopy (cryo-EM) structures of human Pol ε in complex with PCNA, DNA and an incoming nucleotide, revealing how Pol ε associates with PCNA through its PCNA-interacting peptide box and additional unique features of its catalytic domain. Furthermore, by solving a series of cryo-EM structures of Pol ε at a mismatch-containing DNA, we elucidate how Pol ε senses and edits a misincorporated nucleotide. Our structures delineate steps along an intramolecular switching mechanism between polymerase and exonuclease activities, providing the basis for a proofreading mechanism in B-family replicative polymerases.

5.
Nat Commun ; 15(1): 4683, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824131

RESUMO

The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.


Assuntos
Mitocôndrias , RNA de Transferência , Ribonuclease P , tRNA Metiltransferases , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , Mitocôndrias/metabolismo , Ribonuclease P/metabolismo , Ribonuclease P/genética , Ribonuclease P/química , tRNA Metiltransferases/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/química , Processamento Pós-Transcricional do RNA , Microscopia Crioeletrônica , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/química , Metilação , Conformação de Ácido Nucleico , Modelos Moleculares , Precursores de RNA/metabolismo , Precursores de RNA/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa