Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(21): 11809-11813, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33749083

RESUMO

When chiral compounds with low enantiomeric excess (ee, R:S=m:n) were absorbed into the void of the crystalline sponge (CS), enantiomerically pure [(R)m (S)n ] chiral composites were formed, changing the centrosymmetric space group into non-centrosymmetric one. The absolute configuration of the analyte compounds was elucidated with a reasonable Flack (Parsons) parameter value. This phenomenon is characteristic to the "post-crystallization" in the pre-determined CS crystalline lattice, seldom found in common crystallization where the crystalline lattice is defined by an analyte itself. The results highlight the potential of the CS method for absolute configuration determination of low ee samples, an often encountered situation in asymmetric synthesis studies.

2.
Chem Sci ; 14(11): 2910-2914, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36937586

RESUMO

Confinement of molecules in a synthetic host can physically isolate even their unstable temporary structures, which has potential for application to protein transient structure analysis. Here we report the NMR snapshot observation of protein unfolding and refolding processes by confining a target protein in a self-assembled coordination cage. With increasing acetonitrile content in CD3CN/H2O media (50 to 90 vol%), the folding structure of a protein sharply denatured at 83 vol%, clearly revealing the regions of initial unfolding. Unfavorable aggregation of the protein leading to irreversible precipitation is completely prevented because of the spatial isolation of the single protein molecule in the cage. When the acetonitrile content reversed (84 to 70 vol%), the once-denatured protein started to regain its original folded structure at 80 vol%, showing that the protein folding/unfolding process can be referred to as a phase transition with hysteresis behavior.

3.
Sci Rep ; 10(1): 3087, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080270

RESUMO

We have employed a model system, inspired by SNARE proteins, to facilitate membrane fusion between Giant Unilamellar Vesicles (GUVs) and Large Unilamellar Vesicles (LUVs) under physiological conditions. In this system, two synthetic lipopeptide constructs comprising the coiled-coil heterodimer-forming peptides K4, (KIAALKE)4, or E4, (EIAALEK)4, a PEG spacer of variable length, and a cholesterol moiety to anchor the peptides into the liposome membrane replace the natural SNARE proteins. GUVs are functionalized with one of the lipopeptide constructs and the fusion process is triggered by adding LUVs bearing the complementary lipopeptide. Dual-colour time lapse fluorescence microscopy was used to visualize lipid- and content-mixing. Using conventional confocal microscopy, lipid mixing was observed on the lipid bilayer of individual GUVs. In addition to lipid-mixing, content-mixing assays showed a low efficiency due to clustering of K4-functionalized LUVs on the GUVs target membranes. We showed that, through the use of the non-ionic surfactant Tween 20, content-mixing between GUVs and LUVs could be improved, meaning this system has the potential to be employed for drug delivery in biological systems.


Assuntos
Fusão de Membrana , Microscopia de Fluorescência/métodos , Peptídeos/química , Lipossomas Unilamelares/química , Colesterol/química , Cor , Dimerização , Transferência Ressonante de Energia de Fluorescência , Lipídeos/química , Lipopeptídeos/química , Microscopia Confocal , Polissorbatos/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa