Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36850728

RESUMO

Cardiovascular diseases (CVD) represent a serious health problem worldwide, of which atrial fibrillation (AF) is one of the most common conditions. Early and timely diagnosis of CVD is essential for successful treatment. When implemented in the healthcare system this can ease the existing socio-economic burden on health institutions and government. Therefore, developing technologies and tools to diagnose CVD in a timely way and detect AF is an important research topic. ECG monitoring patches allowing ambulatory patient monitoring over several days represent a novel technology, while we witness a significant proliferation of ECG monitoring patches on the market and in the research labs, their performance over a long period of time is not fully characterized. This paper analyzes the signal quality of ECG signals obtained using a single-lead ECG patch featuring self-adhesive dry electrode technology collected from six cardiac patients for 5 days. In particular, we provide insights into signal quality degradation over time, while changes in the average ECG quality per day were present, these changes were not statistically significant. It was observed that the quality was higher during the nights, confirming the link with motion artifacts. These results can improve CVD diagnosis and AF detection in real-world scenarios.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Artefatos , Eletrocardiografia , Eletrodos , Monitorização Ambulatorial
2.
Acta Biomater ; 139: 296-306, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34365040

RESUMO

Flexible, self-healing and adhesive conductive materials with Young's modulus matching biological tissues are highly desired for applications in bioelectronics. Here, we report self-healing, stretchable, highly adhesive and conductive hydrogels obtained by mixing polyvinyl alcohol, sodium tetraborate and a screen printing paste containing the conducting polymer Poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) and diol additives. The as prepared hydrogels exhibited modelling ability, high adhesion on pig skin (1.96 N/cm2), high plastic stretchability (>10000%), a moderate conductivity, a low compressive modulus (0.3-3.7 KPa), a good strain sensitivity (gauge factor = 3.88 at 500% strain), and remarkable self-healing properties. Epidermal patch electrodes prepared using one of our hydrogels demonstrated high-quality recording of electrocardiography (ECG) and electromyography (EMG) signal. Because of their straightforward fabrication, outstanding mechanical properties and possibility to combine the electrode components in a single material, hydrogels based on PVA, borax and PEDOT:PSS are highly promising for applications in bioelectronics and wearable electronics. STATEMENT OF SIGNIFICANCE: Soft materials with electrical conductivity are investigated for healthcare applications, such as electrodes to measure vital signs that can easily adapt to the shape and the movements of human skin. Conductive hydrogels (i.e. gels containing water) are ideal materials for this purpose due softness and flexibility. In this this work, we report hydrogels obtained mixing an electrically conductive polymer, a water-soluble biocompatible polymer and a salt. These materials show high adhesion on skin, electrical conductivity and ability to self-repair after a mechanical damage. These hydrogels were successfully used to fabricate electrode to measure cardiac and muscular electrical signals.


Assuntos
Adesivos , Hidrogéis , Animais , Condutividade Elétrica , Eletrodos , Álcool de Polivinil , Suínos
3.
ACS Appl Mater Interfaces ; 11(19): 17226-17233, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30978001

RESUMO

Conducting polymers have been widely explored as coating materials for metal electrodes to improve neural signal recording and stimulation because of their mixed electronic-ionic conduction and biocompatibility. In particular, the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the best candidates for biomedical applications due to its high conductivity and good electrochemical stability. Coating metal electrodes with PEDOT has shown to enhance the electrode's performance by decreasing the impedance and increasing the charge storage capacity. However, PEDOT-coated metal electrodes often have issues with delamination and stability, resulting in decreased device performance and lifetime. In this work, we were able to electropolymerize PEDOT coatings on sharp platinum-iridium recording and stimulating neural electrodes and demonstrated its mechanical and electrochemical stability. Electropolymerization of PEDOT:tetrafluoroborate was carried out in three different solvents: propylene carbonate, acetonitrile, and water. The stability of the coatings was assessed via ultrasonication, phosphate buffer solution soaking test, autoclave sterilization, and electrical pulsing. Coatings prepared with propylene carbonate or acetonitrile possessed excellent electrochemical stability and survived autoclave sterilization, prolonged soaking, and electrical stimulation without major changes in electrochemical properties. Stimulating microelectrodes were implanted in rats and stimulated daily, for 7 and 15 days. The electrochemical properties monitored in vivo demonstrated that the stimulation procedure for both coated and uncoated electrodes decreased the impedance.


Assuntos
Encéfalo/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Eletrodos Implantados , Neurônios/efeitos dos fármacos , Animais , Encéfalo/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Materiais Revestidos Biocompatíveis/química , Condutividade Elétrica , Impedância Elétrica , Estimulação Elétrica , Humanos , Neurônios/fisiologia , Platina/química , Platina/farmacologia , Polímeros/química , Polímeros/farmacologia , Ratos
4.
ACS Appl Bio Mater ; 2(11): 5154-5163, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021458

RESUMO

Conducting polymer coatings on metal electrodes are an efficient solution to improve neural signal recording and stimulation, due to their mixed electronic-ionic conduction and biocompatibility. To date, only a few studies have been reported on conducting polymer coatings on metallic wire electrodes for muscle signal recording. Chronic muscle signal recording of freely moving animals can be challenging to acquire with coated electrodes, due to muscle movement around the electrode that can increase instances of coating delamination and device failure. The poor adhesion of conducting polymers to some inorganic substrates and the possible degradation of their electrochemical properties after harsh treatments, such as sterilization, or during implantation limits their use for biomedical applications. Here, we demonstrate the mechanical and electrochemical stability of the conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) doped with LiClO4, deposited on stainless steel multistranded wire electrodes for invasive muscle signal recording in mice. The mechanical and electrochemical stability was achieved by tuning the electropolymerization conditions. PEDOT-coated and bare stainless steel electrodes were implanted in the neck muscle of five mice for electromyographic (EMG) activity recording over a period of 6 weeks. The PEDOT coating improved the electrochemical properties of the stainless steel electrodes, lowering the impedance, resulting in an enhanced signal-to-noise ratio during in vivo EMG recording compared to bare electrodes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa