Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Microbiol ; 21(3): e12976, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30427108

RESUMO

Recognition and internalisation of intracellular pathogens by host cells is a multifactorial process, involving both stable and transient interactions. The plasticity of the host cell plasma membrane is fundamental in this infectious process. Here, the participation of macrophage lipid microdomains during adhesion and internalisation of the fungal pathogen Histoplasma capsulatum (Hc) was investigated. An increase in membrane lateral organisation, which is a characteristic of lipid microdomains, was observed during the first steps of Hc-macrophage interaction. Cholesterol enrichment in macrophage membranes around Hc contact regions and reduced levels of Hc-macrophage association after cholesterol removal also suggested the participation of lipid microdomains during Hc-macrophage interaction. Using optical tweezers to study cell-to-cell interactions, we showed that cholesterol depletion increased the time required for Hc adhesion. Additionally, fungal internalisation was significantly reduced under these conditions. Moreover, macrophages treated with the ceramide-glucosyltransferase inhibitor (P4r) and macrophages with altered ganglioside synthesis (from B4galnt1-/- mice) showed a deficient ability to interact with Hc. Coincubation of oligo-GM1 and treatment with Cholera toxin Subunit B, which recognises the ganglioside GM1, also reduced Hc association. Although purified GM1 did not alter Hc binding, treatment with P4 significantly increased the time required for Hc binding to macrophages. The content of CD18 was displaced from lipid microdomains in B4galnt1-/- macrophages. In addition, macrophages with reduced CD18 expression (CD18low ) were associated with Hc at levels similar to wild-type cells. Finally, CD11b and CD18 colocalised with GM1 during Hc-macrophage interaction. Our results indicate that lipid rafts and particularly complex gangliosides that reside in lipid rafts stabilise Hc-macrophage adhesion and mediate efficient internalisation during histoplasmosis.


Assuntos
Adesão Celular , Endocitose , Histoplasma/imunologia , Interações Hospedeiro-Patógeno , Macrófagos/imunologia , Macrófagos/microbiologia , Microdomínios da Membrana/metabolismo , Animais , Linhagem Celular , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Gerodontology ; 33(3): 380-5, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25439584

RESUMO

OBJECTIVE: To evaluate the efficacy of Melaleuca alternifolia and Copaifera officinalis in inhibiting the adhesion of Candida albicans biofilm. BACKGROUND: Over 65% of denture wearers suffer from denture stomatitis, which is one of the most prevalent forms of oral candidiasis. This disease is characterised by the inflammation of the oral mucosa in contact with the contaminated denture. The contaminated denture contributes to the switch of C. albicans from yeast to its pathogenic hyphal form. Candida albicans adheres and colonises the polymethylmethacrylate resin surfaces and thus contributes to the development of denture stomatitis. MATERIALS AND METHODS: The minimal inhibitory concentration (MIC) of M. alternifolia and Co. officinalis was assessed by the agar dilution method. Sixty-six thermopolymerised acrylic resin squares were used and treated with phosphate-buffered saline, sodium hypochlorite 1%, melaleuca 0.75%, melaleuca 0.375%, melaleuca 0.188% and copaiba 10%. For adherence and biofilm formation, the treated squares were placed in six-well tissue culture plates containing 1 × 10(7)  cells/ml of ATCC1023 or SC5314 in Roswell Park Memorial Institute (RPMI) medium, and after 12 h, the planktonic cells were counted. RESULTS: Copaiba oil did not inhibit C. albicans growth. However, melaleuca oil showed an MIC value of 0.375% (3.4 mg/ml) for ATCC10231 and 0.093% (0.84 mg/ml) for SC5314. CONCLUSIONS: Our results demonstrated that M. alternifolia oil inhibited the growth of C. albicans. Moreover, both oils promoted significant adhesion reduction in the tested strains. These findings suggest the possibility of using these oils in prophylaxes against candidiasis.


Assuntos
Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Dentaduras/microbiologia , Fabaceae/química , Melaleuca/química , Óleos de Plantas/farmacologia , Antifúngicos/farmacologia , Candidíase Bucal/prevenção & controle , Estomatite sob Prótese/prevenção & controle
3.
J Fungi (Basel) ; 7(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451062

RESUMO

BACKGROUND: Paracoccidioidomycosis (PCM) is a chronic disease that causes sequelae and requires prolonged treatment; therefore, new therapeutic approaches are necessary. In view of this, three peptides from Paracoccidioides brasiliensis 14-3-3 protein were selected based on its immunogenicity and therapeutic potential. METHODS: The in vitro antifungal activity and cytotoxicity of the 14-3-3 peptides were evaluated. The influence of the peptides in immunological and survival aspects was evaluated in vivo, using Galleria mellonella and the expression of antimicrobial peptide genes in Caenorhabditis elegans. RESULTS: None of the peptides were toxic to HaCaT (skin keratinocyte), MRC-5 (lung fibroblast), and A549 (pneumocyte) cell lines, and only P1 exhibited antifungal activity against Paracoccidioides spp. The peptides could induce an immune response in G. mellonella. Moreover, the peptides caused a delay in the death of Paracoccidioides spp. infected larvae. Regarding C. elegans, the three peptides were able to increase the expression of the antimicrobial peptides. These peptides had essential effects on different aspects of Paracoccidioides spp. infection showing potential for a therapeutic vaccine. Future studies using mammalian methods are necessary to validate our findings.

4.
J Ethnopharmacol ; 216: 184-190, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29325916

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The stem bark of Stryphnodendron adstringens (Mart.) Coville is popularly used as anti-inflammatory, astringent and in the treatment of wounds and vaginal infections. Several pharmacological activities have been scientifically proven by in vitro and in vivo experimental assays for antibacterial, antiviral, antiprotozoan, anti-inflammatory and antioxidant. AIM OF THE STUDY: We investigated whether proanthocyanidin polymeric tannins from the Stryphnodendron adstringens stem bark with antifungal activity against Candida albicans in vitro are also active against planktonic and biofilm cells of Candida non-albicans (CNA, including fluconazole-resistant isolates) and are capable of controlling Candida vaginitis in vivo. MATERIALS AND METHODS: A total of 46 clinical isolates and 5 reference Candida spp. strains were used in this study. The antifungal effects in vitro of tannins (F2 and sub-fraction F2.4) from S. adstringens stem bark were evaluated using a broth microdilution assay (for planktonic yeasts and biofilm dispersion cells) or by XTT assay (for biofilm sessile cells). For in vivo antifungal activity analysis, mice with vaginal infection by C. albicans or C. glabrata were treated with a topical gel containing F2 (alone or combined with oral fluconazole), and the vaginal histopathology and fungal burden (by CFU counts from vaginal homogenates) were analyzed. RESULTS: F2 and F2.4 inhibited the proliferation of planktonic cells of Candida spp., especially that of fluconazole- and/or amphotericin B-resistant isolates. F2 and F2.4 also inhibited the proliferation of Candida biofilm dispersion cells. Moreover, a gel containing F2 efficiently controlled vaginal infection by C. albicans and C. glabrata in mice, with no noticeable toxicity to vaginal tissue. CONCLUSIONS: Our data show that proanthocyanidin polymeric tannins obtained from S. adstringens have antifungal activity in vitro against C. albicans and CNA (including fluconazole-resistant isolates) and presented efficacy in the control of candidiasis in murine model. Therefore, these tannins have potential use in the treatment of vaginal candidiasis, representing interesting alternatives to current antifungals.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Candidíase Vulvovaginal/tratamento farmacológico , Fabaceae , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Administração Intravaginal , Animais , Antifúngicos/administração & dosagem , Antifúngicos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Candida glabrata/crescimento & desenvolvimento , Candidíase Vulvovaginal/microbiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fabaceae/química , Feminino , Géis , Camundongos Endogâmicos BALB C , Fitoterapia , Casca de Planta , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Caules de Planta , Plantas Medicinais , Proantocianidinas/administração & dosagem , Proantocianidinas/isolamento & purificação
5.
Int J Antimicrob Agents ; 49(4): 465-471, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28279786

RESUMO

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by the dimorphic fungi Paracoccidioides spp. The duration of antifungal treatment ranges from months to years and relapses may nevertheless occur despite protracted therapy. Thus, there remains an urgent need for new therapeutic options. Miltefosine (MLT), an analogue of alkylphospholipids, has antifungal activity against species of yeast and filamentous fungi. The aim of this study was to evaluate the antifungal effects of MLT on the yeast forms of Paracoccidioides brasiliensis and Paracoccidioides lutzii. MLT demonstrated inhibitory activity from 0.12 to 1 µg/mL, which was similar to amphotericin B or the combination trimethoprim/sulfamethoxazole but was not more effective than itraconazole. The fungicidal activity of MLT occurred at concentrations ≥1 µg/mL. Ultrastructural alterations were observed following exposure of the fungus to a subinhibitory concentration of MLT, such as cytoplasmic membrane alteration, mitochondrial swelling, electron-lucent vacuole accumulation and increasing melanosome-like structures. Melanin production by yeasts following MLT exposure was confirmed by labelling with antibodies to melanin. In addition, the combination of a subinhibitory concentration of MLT and tricyclazole, an inhibitor of DHN-melanin biosynthesis, drastically reduced yeast viability. In conclusion, MLT had a fungicidal effect against both Paracoccidioides spp., and a subinhibitory concentration impacted melanogenesis. These findings suggest that additional investigations should be pursued to establish a role for MLT in the treatment of PCM.


Assuntos
Antifúngicos/farmacologia , Melaninas/biossíntese , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/metabolismo , Fosforilcolina/análogos & derivados , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Cães , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Organelas/efeitos dos fármacos , Organelas/ultraestrutura , Paracoccidioides/isolamento & purificação , Paracoccidioides/ultraestrutura , Fosforilcolina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa