Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 312(5774): 719-22, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16574823

RESUMO

We report an extremely rapid mechanism for magnetic field amplification during the merger of a binary neutron star system. This has implications for the production of the short class of gamma-ray bursts, which recent observations suggest may originate in such mergers. In detailed magnetohydrodynamic simulations of the merger process, the fields are amplified by Kelvin-Helmholtz instabilities beyond magnetar field strength and may therefore represent the strongest magnetic fields in the universe. The amplification occurs in the shear layer that forms between the neutron stars and on a time scale of only 1 millisecond, that is, long before the remnant can collapse into a black hole.

2.
Astrophys J ; 525(2): L121-L124, 1999 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-10525469

RESUMO

The production site of the neutron-rich heavy elements that are formed by rapid neutron capture (the r-process) is still unknown despite intensive research. Here we show detailed studies of a scenario that has been proposed earlier by Lattimer & Schramm, Symbalisty & Schramm, Eichler et al., and Davies et al., namely the merger of two neutron stars. The results of hydrodynamic and full network calculations are combined in order to investigate the relevance of this scenario for r-process nucleosynthesis. Sufficient material is ejected to explain the amount of r-process nuclei in the Galaxy by decompression of neutron star material. Provided that the ejecta consist of matter with a proton-to-nucleon ratio of Ye approximately 0.1, the calculated abundances fit the observed solar r-pattern excellently for nuclei that include and are heavier than the A approximately 130 peak.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa