Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cephalalgia ; 42(11-12): 1148-1159, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35514204

RESUMO

BACKGROUND: Migraine shows a cyclic pattern with an inter-ictal-, a pre-ictal, an ictal- and a post-ictal phase. We aimed to examine changes in psychophysical parameters during the migraine cycle. METHODS: The perception of nociceptive and non-nociceptive stimuli and an electrically induced axon-reflex-erythema were assessed in 20 healthy controls and 14 migraine patients on five consecutive days according to different phases of the migraine cycle. Pain was rated three times during a 10-second electrical stimulus. The size of the axon-reflex-erythema was determined using laser-Doppler-imaging. Intensity and hedonic estimates of odours presented by Sniffin' Sticks were rated. RESULTS: In healthy controls, no significant changes over the test days were observed. In migraine patients pain thresholds at the head decreased with an ictal minimum. Less habituation after five seconds of stimulation at the head was found pre-ictally, whereas reduced habituation to 10-second electrical stimulation was present in all phases. The axon-reflex-erythema size showed an inter-ictal-specific minimum at the head. odours were perceived ictally as more unpleasant and intense. CONCLUSIONS: Somatosensory functions, pain thresholds and habituation as predominantly central parameters, axon-reflex-erythema as a peripheral function of trigeminal neurons and odour perception as a predominantly extra-thalamic sensation change specifically over the migraine cycle indicating complex variations of neuronal signal processing.


Assuntos
Habituação Psicofisiológica , Transtornos de Enxaqueca , Eritema , Habituação Psicofisiológica/fisiologia , Humanos , Dor , Limiar da Dor/fisiologia
2.
J Neurosci ; 40(38): 7269-7285, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817250

RESUMO

Processing of olfactory information is modulated by centrifugal projections from cortical areas, yet their behavioral relevance and underlying neural mechanisms remain unclear in most cases. The anterior olfactory nucleus (AON) is part of the olfactory cortex, and its extensive connections to multiple upstream and downstream brain centers place it in a prime position to modulate early sensory information in the olfactory system. Here, we show that optogenetic activation of AON neurons in awake male and female mice was not perceived as an odorant equivalent cue. However, AON activation during odorant presentation reliably suppressed behavioral odor responses. This AON-mediated effect was fast and constant across odors and concentrations. Likewise, activation of glutamatergic AON projections to the olfactory bulb (OB) transiently inhibited the excitability of mitral/tufted cells (MTCs) that relay olfactory input to the cortex. Single-unit MTC recordings revealed that optogenetic activation of glutamatergic AON terminals in the OB transiently decreased sensory-evoked MTC spiking, regardless of the strength or polarity of the sensory response. The reduction in MTC firing during optogenetic stimulation was confirmed in recordings in awake mice. These findings suggest that glutamatergic AON projections to the OB impede early olfactory signaling by inhibiting OB output neurons, thereby dynamically gating sensory throughput to the cortex.SIGNIFICANCE STATEMENT The anterior olfactory nucleus (AON) as an olfactory information processing area sends extensive projections to multiple brain centers, but the behavioral consequences of its activation have been scarcely investigated. Using behavioral tests in combination with optogenetic manipulation, we show that, in contrast to what has been suggested previously, the AON does not seem to form odor percepts but instead suppresses behavioral odor responses across odorants and concentrations. Furthermore, this study shows that AON activation inhibits olfactory bulb output neurons in both anesthetized as well as awake mice, pointing to a potential mechanism by which the olfactory cortex can actively and dynamically gate sensory throughput to higher brain centers.


Assuntos
Bulbo Olfatório/metabolismo , Condutos Olfatórios/metabolismo , Percepção Olfatória , Transmissão Sináptica , Animais , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Aferentes/metabolismo , Neurônios Aferentes/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Olfato
3.
J Neurosci ; 40(21): 4203-4218, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312886

RESUMO

The accessory olfactory system controls social and sexual behavior. In the mouse accessory olfactory bulb, the first central stage of information processing along the accessory olfactory pathway, projection neurons (mitral cells) display infra-slow oscillatory discharge with remarkable periodicity. The physiological mechanisms that underlie this default output state, however, remain controversial. Moreover, whether such rhythmic infra-slow activity patterns exist in awake behaving mice and whether such activity reflects the functional organization of the accessory olfactory bulb circuitry remain unclear. Here, we hypothesize that mitral cell ensembles form synchronized microcircuits that subdivide the accessory olfactory bulb into segregated functional clusters. We use a miniature microscope to image the Ca2+ dynamics within the apical dendritic compartments of large mitral cell ensembles in vivo We show that infra-slow periodic patterns of concerted neural activity, indeed, reflect the idle state of accessory olfactory bulb output in awake male and female mice. Ca2+ activity profiles are distinct and glomerulus-specific. Confocal time-lapse imaging in acute slices reveals that groups of mitral cells assemble into microcircuits that exhibit correlated Ca2+ signals. Moreover, electrophysiological profiling of synaptic connectivity indicates functional coupling between mitral cells. Our results suggest that both intrinsically rhythmogenic neurons and neurons entrained by fast synaptic drive are key elements in organizing the accessory olfactory bulb into functional microcircuits, each characterized by a distinct default pattern of infra-slow rhythmicity.SIGNIFICANCE STATEMENT Information processing in the accessory olfactory bulb (AOB) plays a central role in conspecific chemosensory communication. Surprisingly, many basic physiological principles that underlie neuronal signaling in the AOB remain elusive. Here, we show that AOB projection neurons (mitral cells) form parallel synchronized ensembles both in vitro and in vivo Infra-slow synchronous oscillatory activity within AOB microcircuits thus adds a new dimension to chemosensory coding along the accessory olfactory pathway.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos
4.
Cell Tissue Res ; 383(1): 507-524, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33355709

RESUMO

Evolutionarily, olfaction is one of the oldest senses and pivotal for an individual's health and survival. The olfactory bulb (OB), as the first olfactory relay station in the brain, is known to heavily process sensory information. To adapt to an animal's needs, OB activity can be influenced by many factors either from within (intrinsic neuromodulation) or outside (extrinsic neuromodulation) the OB which include neurotransmitters, neuromodulators, hormones, and neuropeptides. Extrinsic sources seem to be of special importance as the OB receives massive efferent input from numerous brain centers even outweighing the sensory input from the nose. Here, we review neuromodulatory processes in the rodent OB from such extrinsic sources. We will discuss extrinsic neuromodulation according to points of origin, receptors involved, affected circuits, and changes in behavior. In the end, we give a brief outlook on potential future directions in research on neuromodulation in the OB.


Assuntos
Bulbo Olfatório/fisiologia , Animais , Roedores
5.
J Neurosci ; 36(25): 6820-35, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27335411

RESUMO

UNLABELLED: Serotonergic neurons in the brainstem raphe nuclei densely innervate the olfactory bulb (OB), where they can modulate the initial representation and processing of olfactory information. Serotonergic modulation of sensory responses among defined OB cell types is poorly characterized in vivo Here, we used cell-type-specific expression of optical reporters to visualize how raphe stimulation alters sensory responses in two classes of GABAergic neurons of the mouse OB glomerular layer, periglomerular (PG) and short axon (SA) cells, as well as mitral/tufted (MT) cells carrying OB output to piriform cortex. In PG and SA cells, brief (1-4 s) raphe stimulation elicited a large increase in the magnitude of responses linked to inhalation of ambient air, as well as modest increases in the magnitude of odorant-evoked responses. Near-identical effects were observed when the optical reporter of glutamatergic transmission iGluSnFR was expressed in PG and SA cells, suggesting enhanced excitatory input to these neurons. In contrast, in MT cells imaged from the dorsal OB, raphe stimulation elicited a strong increase in resting GCaMP fluorescence with only a slight enhancement of inhalation-linked responses to odorant. Finally, optogenetically stimulating raphe serotonergic afferents in the OB had heterogeneous effects on presumptive MT cells recorded extracellularly, with an overall modest increase in resting and odorant-evoked responses during serotonergic afferent stimulation. These results suggest that serotonergic afferents from raphe dynamically modulate olfactory processing through distinct effects on multiple OB targets, and may alter the degree to which OB output is shaped by inhibition during behavior. SIGNIFICANCE STATEMENT: Modulation of the circuits that process sensory information can profoundly impact how information about the external world is represented and perceived. This study investigates how the serotonergic system modulates the initial processing of olfactory information by the olfactory bulb, an obligatory relay between sensory neurons and cortex. We find that serotonergic projections from the raphe nuclei to the olfactory bulb dramatically enhance the responses of two classes of inhibitory interneurons to sensory input, that this effect is mediated by increased glutamatergic drive onto these neurons, and that serotonergic afferent activation alters the responses of olfactory bulb output neurons in vivo These results elucidate pathways by which neuromodulatory systems can dynamically regulate brain circuits during behavior.


Assuntos
Bulbo Olfatório/citologia , Condutos Olfatórios/fisiologia , Núcleos da Rafe/citologia , Neurônios Serotoninérgicos/fisiologia , Serotonina/metabolismo , Olfato/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacologia , Feminino , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Odorantes , Optogenética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Olfato/genética , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Chem Senses ; 42(5): 375-379, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379355

RESUMO

Interactions with the environment depend not only on sensory perception of external stimuli but also on processes of neuromodulation regulated by the internal state of an organism. These processes allow regulation of stimulus detection to match the demands of an organism influenced by its general brain state (satiety, wakefulness/sleep state, attentiveness, arousal, learning etc.). The sense of smell is initiated by sensory neurons located in the nasal cavity that recognize environmental odorants and project axons into the olfactory bulb (OB), where they form synapses with several types of neurons. Modulations of early synaptic circuits are particularly important since these can affect all subsequent processing steps. While the precise mechanisms have not been fully elucidated, work from many labs has demonstrated that the activity of neurons in the OB and cortex can be modulated by different factors inducing specific changes to olfactory information processing. The symposium "Neuromodulation in Chemosensory Pathways" at the International Symposium on Olfaction and Taste (ISOT 2016) highlighted some of the most recent advances in state-dependent network modulations of the mouse olfactory system including modulation mediated by specific neurotransmitters and neuroendocrine molecules, involving pharmacological, electrophysiological, learning, and behavioral approaches.


Assuntos
Neurotransmissores/metabolismo , Bulbo Olfatório/metabolismo , Células Receptoras Sensoriais/metabolismo , Olfato , Animais
7.
J Neurosci ; 35(14): 5680-92, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855181

RESUMO

Cholinergic [acetylcholine (ACh)] axons from the basal forebrain innervate olfactory bulb glomeruli, the initial site of synaptic integration in the olfactory system. Both nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs) are expressed in glomeruli. The activation of nAChRs directly excites both mitral/tufted cells (MTCs) and external tufted cells (ETCs), the two major excitatory neurons that transmit glomerular output. The functional roles of mAChRs in glomerular circuits are unknown. We show that the restricted glomerular application of ACh causes rapid, brief nAChR-mediated excitation of both MTCs and ETCs in the mouse olfactory bulb. This excitation is followed by mAChR-mediated inhibition, which is blocked by GABAA receptor antagonists, indicating the engagement of periglomerular cells (PGCs) and/or short axon cells (SACs), the two major glomerular inhibitory neurons. Indeed, selective activation of glomerular mAChRs, with ionotropic GluRs and nAChRs blocked, increased IPSCs in MTCs and ETCs, indicating that mAChRs recruit glomerular inhibitory circuits. Selective activation of glomerular mAChRs in the presence of tetrodotoxin increased IPSCs in all glomerular neurons, indicating action potential-independent enhancement of GABA release from PGC and/or SAC dendrodendritic synapses. mAChR-mediated enhancement of GABA release also presynaptically suppressed the first synapse of the olfactory system via GABAB receptors on sensory terminals. Together, these results indicate that cholinergic modulation of glomerular circuits is biphasic, involving an initial excitation of MTC/ETCs mediated by nAChRs followed by inhibition mediated directly by mAChRs on PGCs/SACs. This may phasically enhance the sensitivity of glomerular outputs to odorants, an action that is consistent with recent in vivo findings.


Assuntos
Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/citologia , Receptores Muscarínicos/metabolismo , Sinapses/fisiologia , Acetilcolina/farmacologia , Potenciais de Ação/fisiologia , Animais , Channelrhodopsins , Colina O-Acetiltransferase/genética , Colinérgicos/farmacologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurotransmissores/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/efeitos dos fármacos , Tetrodotoxina/farmacologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
8.
J Neurosci ; 34(13): 4654-64, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24672011

RESUMO

Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment.


Assuntos
Viés , Neurônios Colinérgicos/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Prosencéfalo/citologia , Olfato/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Channelrhodopsins , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Colinérgicos/farmacologia , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Mecamilamina/farmacologia , Camundongos , Camundongos Transgênicos , Escopolamina/farmacologia
9.
J Biol Chem ; 289(25): 17529-40, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24790106

RESUMO

Trigeminal fibers terminate within the facial mucosa and skin and transmit tactile, proprioceptive, chemical, and nociceptive sensations. Trigeminal sensations can arise from the direct stimulation of intraepithelial free nerve endings or indirectly through information transmission from adjacent cells at the peripheral innervation area. For mechanical and thermal cues, communication processes between skin cells and somatosensory neurons have already been suggested. High concentrations of most odors typically provoke trigeminal sensations in vivo but surprisingly fail to activate trigeminal neuron monocultures. This fact favors the hypothesis that epithelial cells may participate in chemodetection and subsequently transmit signals to neighboring trigeminal fibers. Keratinocytes, the major cell type of the epidermis, express various receptors that enable reactions to multiple environmental stimuli. Here, using a co-culture approach, we show for the first time that exposure to the odorant chemicals induces a chemical communication between human HaCaT keratinocytes and mouse trigeminal neurons. Moreover, a supernatant analysis of stimulated keratinocytes and subsequent blocking experiments with pyrodoxalphosphate-6-azophenyl-2',4'-disulfonate revealed that ATP serves as the mediating transmitter molecule released from skin cells after odor stimulation. We show that the ATP release resulting from Javanol® stimulation of keratinocytes was mediated by pannexins. Consequently, keratinocytes act as chemosensors linking the environment and the trigeminal system via ATP signaling.


Assuntos
Trifosfato de Adenosina/metabolismo , Epiderme/metabolismo , Queratinócitos/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Nervo Trigêmeo/metabolismo , Animais , Linhagem Celular , Conexinas/metabolismo , Células Epidérmicas , Feminino , Humanos , Queratinócitos/citologia , Masculino , Camundongos , Neurônios/citologia , Nervo Trigêmeo/citologia
11.
J Neurosci ; 33(38): 15195-206, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24048849

RESUMO

Tools enabling the manipulation of well defined neuronal subpopulations are critical for probing complex neuronal networks. Cre recombinase (Cre) mouse driver lines in combination with the Cre-dependent expression of proteins using viral vectors--in particular, recombinant adeno-associated viral vectors (rAAVs)--have emerged as a widely used platform for achieving transgene expression in specified neural populations. However, the ability of rAAVs to further specify neuronal subsets on the basis of their anatomical connectivity has been reported as limited or inconsistent. Here, we systematically tested a variety of widely used neurotropic rAAVs for their ability to mediate retrograde gene transduction in the mouse brain. We tested pseudotyped rAAVs of several common serotypes (rAAV 2/1, 2/5, and 2/9) as well as constructs both with and without Cre-dependent expression switches. Many of the rAAVs tested--in particular, though not exclusively, Cre-dependent vectors--showed a robust capacity for retrograde infection and transgene expression. Retrograde expression was successful over distances as large as 6 mm and in multiple neuron types, including olfactory projection neurons, neocortical pyramidal cells projecting to distinct targets, and corticofugal and modulatory projection neurons. Retrograde infection using transgenes such as ChR2 allowed for optical control or optically assisted electrophysiological identification of neurons defined genetically as well as by their projection target. These results establish a widely accessible tool for achieving combinatorial specificity and stable, long-term transgene expression to isolate precisely defined neuron populations in the intact animal.


Assuntos
Dependovirus/genética , Regulação da Expressão Gênica/fisiologia , Vetores Genéticos/fisiologia , Neurônios/metabolismo , Condutos Olfatórios/citologia , Potenciais de Ação/genética , Animais , Channelrhodopsins , Colecistocinina/genética , Colecistocinina/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/genética , Integrases , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais/metabolismo , Neurônios/classificação , Condutos Olfatórios/metabolismo , Condutos Olfatórios/fisiologia , Optogenética , Técnicas de Patch-Clamp , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Transdução Genética
12.
J Neurosci ; 33(12): 5285-300, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23516293

RESUMO

Understanding central processing requires precise monitoring of neural activity across populations of identified neurons in the intact brain. In the present study, we used recently optimized variants of the genetically encoded calcium sensor GCaMP (GCaMP3 and GCaMPG5G) to image activity among genetically and anatomically defined neuronal populations in the olfactory bulb (OB), including two types of GABAergic interneurons (periglomerular [PG] and short axon [SA] cells) and OB output neurons (mitral/tufted [MT] cells) projecting to the piriform cortex. We first established that changes in neuronal spiking can be related accurately to GCaMP fluorescence changes via a simple quantitative relationship over a large dynamic range. We next used in vivo two-photon imaging from individual neurons and epifluorescence signals reflecting population-level activity to investigate the spatiotemporal representation of odorants across these neuron types in anesthetized and awake mice. Under anesthesia, individual PG and SA cells showed temporally simple responses and little spontaneous activity, whereas MT cells were spontaneously active and showed diverse temporal responses. At the population level, response patterns of PG, SA, and MT cells were surprisingly similar to those imaged from sensory inputs, with shared odorant-specific topography across the dorsal OB and inhalation-coupled temporal dynamics. During wakefulness, PG and SA cell responses increased in magnitude but remained temporally simple, whereas those of MT cells changed to complex spatiotemporal patterns reflecting restricted excitation and widespread inhibition. These results suggest multiple circuit elements with distinct roles in transforming odor representations in the OB and provide a framework for further study of early olfactory processing using optical and genetic tools.


Assuntos
Genes Reporter/fisiologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Olfato/fisiologia , Potenciais de Ação/fisiologia , Anestesia , Animais , Mapeamento Encefálico/métodos , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Dissecação/métodos , Integrases/genética , Interneurônios/fisiologia , Camundongos , Camundongos Transgênicos , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Técnicas de Cultura de Órgãos , Vigília/fisiologia
13.
Prog Neurobiol ; 228: 102486, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37343762

RESUMO

Olfaction is an important sensory modality for many species and greatly influences animal and human behavior. Still, much about olfactory perception remains unknown. The anterior olfactory nucleus is one of the brain's central early olfactory processing areas. Located directly posterior to the olfactory bulb in the olfactory peduncle with extensive in- and output connections and unique cellular composition, it connects olfactory processing centers of the left and right hemispheres. Almost 20 years have passed since the last comprehensive review on the anterior olfactory nucleus has been published and significant advances regarding its anatomy, function, and pathophysiology have been made in the meantime. Here we briefly summarize previous knowledge on the anterior olfactory nucleus, give detailed insights into the progress that has been made in recent years, and map out its emerging importance in translational research of neurological diseases.


Assuntos
Córtex Olfatório , Condutos Olfatórios , Animais , Humanos , Condutos Olfatórios/fisiologia , Bulbo Olfatório , Olfato/fisiologia
14.
Stud Health Technol Inform ; 302: 1025-1026, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203571

RESUMO

Despite developments in wearable devices for detecting various bio-signals, continuous measurement of breathing rate (BR) remains a challenge. This work presents an early proof of concept that employs a wearable patch to estimate BR. We propose combining techniques for calculating BR from electrocardiogram (ECG) and accelerometer (ACC) signals, while applying decision rules based on signal-to-noise (SNR) to fuse the estimates for improved accuracy.


Assuntos
Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Frequência Cardíaca , Eletrocardiografia/métodos , Acelerometria , Algoritmos
15.
Front Neurol ; 13: 1040648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686527

RESUMO

Epilepsy has a high prevalence and can severely impair quality of life and increase the risk of premature death. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in drug-resistant epilepsy and most often results from respiratory and cardiac impairments due to brainstem dysfunction. Epileptic activity can spread widely, influencing neuronal activity in regions outside the epileptic network. The brainstem controls cardiorespiratory activity and arousal and reciprocally connects to cortical, diencephalic, and spinal cord areas. Epileptic activity can propagate trans-synaptically or via spreading depression (SD) to alter brainstem functions and cause cardiorespiratory dysfunction. The mechanisms by which seizures propagate to or otherwise impair brainstem function and trigger the cascading effects that cause SUDEP are poorly understood. We review insights from mouse models combined with new techniques to understand the pathophysiology of epilepsy and SUDEP. These techniques include in vivo, ex vivo, invasive and non-invasive methods in anesthetized and awake mice. Optogenetics combined with electrophysiological and optical manipulation and recording methods offer unique opportunities to study neuronal mechanisms under normal conditions, during and after non-fatal seizures, and in SUDEP. These combined approaches can advance our understanding of brainstem pathophysiology associated with seizures and SUDEP and may suggest strategies to prevent SUDEP.

16.
Brain Imaging Behav ; 15(3): 1300-1312, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32770446

RESUMO

Odor modulates the experience of pain, but the neural basis of how the two sensory modalities, olfaction and pain, are linked in the central nervous system is far from clear. In this study, we investigated the mechanisms by which the brain modulates the pain experience under concurrent odorant stimulation. We conducted an fMRI study using a 2 × 3 factorial design, in which one of two temperatures (warm, hot) and one of three types of odors (pleasant, unpleasant, no odor) were presented simultaneously. "Hot" temperatures were individually determined as those perceived as painful (mean temperature = 46.9 °C). The non-painful "warm" temperature was set to 40 °C. Participants rated hot compared to warm stimuli as more intense and unpleasant, especially in the presence of an unpleasant odor. Parametric modeling on the intensity ratings activated the pain network, covering brain regions activated by the hot stimuli. The presence of an odor, irrespective of its valence, activated the amygdalae. In addition, the amygdalae showed stimulus-dependent functional couplings with the right supramarginal gyrus and with the left superior frontal gyrus. The coupling between the right amygdala and the left superior frontal gyrus was related to the intensity and unpleasantness ratings of the pain experience. Our results suggest that these functional connections may reflect the integrating process of the two sensory modalities, enabling olfactory influence on the pain experience.


Assuntos
Imageamento por Ressonância Magnética , Odorantes , Temperatura Alta , Humanos , Dor/diagnóstico por imagem , Olfato
17.
Prog Neurobiol ; 198: 101906, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32905807

RESUMO

The dual-specificity phosphatase (DUSP) family includes a heterogeneous group of protein phosphatases that dephosphorylate both phospho-tyrosine and phospho-serine/phospho-threonine residues within a single substrate. These protein phosphatases have many substrates and modulate diverse neural functions, such as neurogenesis, differentiation, and apoptosis. DUSP genes have furthermore been associated with mental disorders such as depression and neurological disorders such as Alzheimer's disease. Herein, we review the current literature on the DUSP family of genes concerning mental and neurological disorders. This review i) outlines the structure and general functions of DUSP genes, and ii) overviews the literature on DUSP genes concerning mental and neurological disorders, including model systems, while furthermore providing perspectives for future research.


Assuntos
Doenças do Sistema Nervoso , Fosfatases de Especificidade Dupla , Humanos , Doenças do Sistema Nervoso/genética , Neurogênese , Fosfoproteínas Fosfatases
18.
Sci Rep ; 11(1): 18920, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556704

RESUMO

Chronically implanted neural probes are powerful tools to decode brain activity however, recording population and spiking activity over long periods remains a major challenge. Here, we designed and fabricated flexible intracortical Michigan-style arrays with a shank cross-section per electrode of 250 µm[Formula: see text] utilizing the polymer paryleneC with the goal to improve the immune acceptance. As flexible neural probes are unable to penetrate the brain due to the low buckling force threshold, a tissue-friendly insertion system was developed by reducing the effective shank length. The insertion strategy enabled the implantation of the four, bare, flexible shanks up to 2 mm into the mouse brain without increasing the implantation footprint and therefore, minimizing the acute trauma. In acute recordings from the mouse somatosensory cortex and the olfactory bulb, we demonstrated that the flexible probes were able to simultaneously detect local field potentials as well as single and multi-unit activity. Additionally, the flexible arrays outperformed stiff probes with respect to yield of single unit activity. Following the successful in vivo validation, we further improved the microfabrication towards a double-metal-layer process, and were able to double the number of electrodes per shank by keeping the shank width resulting in a cross-section per electrode of 118 µm[Formula: see text].

19.
Channels (Austin) ; 15(1): 208-228, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33487118

RESUMO

Mutations in the voltage-gated sodium channel Nav1.7 are linked to human pain. The Nav1.7/N1245S variant was described before in several patients suffering from primary erythromelalgia and/or olfactory hypersensitivity. We have identified this variant in a pain patient and a patient suffering from severe and life-threatening orthostatic hypotension. In addition, we report a female patient suffering from muscle pain and carrying the Nav1.7/E1139K variant. We tested both Nav1.7 variants by whole-cell voltage-clamp recordings in HEK293 cells, revealing a slightly enhanced current density for the N1245S variant when co-expressed with the ß1 subunit. This effect was counteracted by an enhanced slow inactivation. Both variants showed similar voltage dependence of activation and steady-state fast inactivation, as well as kinetics of fast inactivation, deactivation, and use-dependency compared to WT Nav1.7. Finally, homology modeling revealed that the N1245S substitution results in different intramolecular interaction partners. Taken together, these experiments do not point to a clear pathogenic effect of either the N1245S or E1139K variant and suggest they may not be solely responsible for the patients' pain symptoms. As discussed previously for other variants, investigations in heterologous expression systems may not sufficiently mimic the pathophysiological situation in pain patients, and single nucleotide variants in other genes or modulatory proteins are necessary for these specific variants to show their effect. Our findings stress that biophysical investigations of ion channel mutations need to be evaluated with care and should preferably be supplemented with studies investigating the mutations in their context, ideally in human sensory neurons.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Eritromelalgia , Células HEK293 , Humanos , Potenciais da Membrana , Técnicas de Patch-Clamp
20.
Sci Rep ; 11(1): 6934, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767215

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin gene. The neuropathology of HD is characterized by the decline of a specific neuronal population within the brain, the striatal medium spiny neurons (MSNs). The origins of this extreme vulnerability remain unknown. Human induced pluripotent stem cell (hiPS cell)-derived MSNs represent a powerful tool to study this genetic disease. However, the differentiation protocols published so far show a high heterogeneity of neuronal populations in vitro. Here, we compared two previously published protocols to obtain hiPS cell-derived striatal neurons from both healthy donors and HD patients. Patch-clamp experiments, immunostaining and RT-qPCR were performed to characterize the neurons in culture. While the neurons were mature enough to fire action potentials, a majority failed to express markers typical for MSNs. Voltage-clamp experiments on voltage-gated sodium (Nav) channels revealed a large variability between the two differentiation protocols. Action potential analysis did not reveal changes induced by the HD mutation. This study attempts to demonstrate the current challenges in reproducing data of previously published differentiation protocols and in generating hiPS cell-derived striatal MSNs to model a genetic neurodegenerative disorder in vitro.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Doença de Huntington , Neurônios/fisiologia , Potenciais de Ação , Animais , Cálcio/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos Endogâmicos C57BL , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa