Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Cell ; 187(7): 1769-1784.e18, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552613

RESUMO

Mapping the intricate spatial relationships between the many different molecules inside a cell is essential to understanding cellular functions in all their complexity. Super-resolution fluorescence microscopy offers the required spatial resolution but struggles to reveal more than four different targets simultaneously. Exchanging labels in subsequent imaging rounds for multiplexed imaging extends this number but is limited by its low throughput. Here, we present a method for rapid multiplexed super-resolution microscopy that can, in principle, be applied to a nearly unlimited number of molecular targets by leveraging fluorogenic labeling in conjunction with transient adapter-mediated switching for high-throughput DNA-PAINT (FLASH-PAINT). We demonstrate the versatility of FLASH-PAINT with four applications: mapping nine proteins in a single mammalian cell, elucidating the functional organization of primary cilia by nine-target imaging, revealing the changes in proximity of thirteen different targets in unperturbed and dissociated Golgi stacks, and investigating and quantifying inter-organelle contacts at 3D super-resolution.


Assuntos
Microscopia de Fluorescência , Animais , DNA , Complexo de Golgi , Mamíferos , Microscopia de Fluorescência/métodos , Oligonucleotídeos , Proteínas
2.
Cell ; 185(21): 3844-3848, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36174578

RESUMO

The foundational research recognized by this year's Lasker Basic Science Research Award "for discoveries concerning the integrins-key mediators of cell-matrix and cell-cell adhesion in physiology and disease" reaches back to the 1970s.


Assuntos
Distinções e Prêmios , Integrinas
3.
Cell ; 166(4): 1028-1040, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27397506

RESUMO

Fluorescence nanoscopy, or super-resolution microscopy, has become an important tool in cell biological research. However, because of its usually inferior resolution in the depth direction (50-80 nm) and rapidly deteriorating resolution in thick samples, its practical biological application has been effectively limited to two dimensions and thin samples. Here, we present the development of whole-cell 4Pi single-molecule switching nanoscopy (W-4PiSMSN), an optical nanoscope that allows imaging of three-dimensional (3D) structures at 10- to 20-nm resolution throughout entire mammalian cells. We demonstrate the wide applicability of W-4PiSMSN across diverse research fields by imaging complex molecular architectures ranging from bacteriophages to nuclear pores, cilia, and synaptonemal complexes in large 3D cellular volumes.


Assuntos
Técnicas Citológicas/métodos , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Animais , Bacteriófagos/ultraestrutura , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Técnicas Citológicas/instrumentação , Complexo de Golgi/ultraestrutura , Masculino , Camundongos , Microscopia de Fluorescência/instrumentação , Imagem Individual de Molécula/instrumentação , Espermatócitos/ultraestrutura , Complexo Sinaptonêmico/ultraestrutura
4.
Nat Methods ; 20(6): 891-897, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37106230

RESUMO

Hierarchical organization of integral membrane proteins (IMP) and lipids at the membrane is essential for regulating myriad downstream signaling. A quantitative understanding of these processes requires both detections of oligomeric organization of IMPs and lipids directly from intact membranes and determination of key membrane components and properties that regulate them. Addressing this, we have developed a platform that enables native mass spectrometry (nMS) analysis of IMP-lipid complexes directly from intact and customizable lipid membranes. Both the lipid composition and membrane properties (such as curvature, tension, and fluidity) of these bilayers can be precisely customized to a target membrane. Subsequent direct nMS analysis of these intact proteolipid vesicles can yield the oligomeric states of the embedded IMPs, identify bound lipids, and determine the membrane properties that can regulate the observed IMP-lipid organization. Applying this method, we show how lipid binding regulates neurotransmitter release and how membrane composition regulates the functional oligomeric state of a transporter.


Assuntos
Lipídeos , Proteínas de Membrana , Espectrometria de Massas/métodos , Transporte Biológico , Lipídeos/química , Proteínas de Membrana/química , Bicamadas Lipídicas/química
5.
Cell ; 146(6): 851-4, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21907398

RESUMO

F.-Ulrich Hartl and Arthur Horwich will share this year's Lasker Basic Medical Science Award for the discovery of the cell's protein-folding machinery, exemplified by cage-like structures that convert newly synthesized proteins into their biologically active forms. Their fundamental findings reveal mechanisms that operate in normal physiologic processes and help to explain the problems that arise in diseases of protein folding.


Assuntos
Distinções e Prêmios , Biologia/história , Dobramento de Proteína , Proteínas/metabolismo , Animais , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , História do Século XX , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas/química , Estados Unidos
6.
Proc Natl Acad Sci U S A ; 120(39): e2311128120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37732752

RESUMO

This year's Lasker Basic Science Award recognizes the invention of AlphaFold, a revolutionary advance in the history of protein research which for the first time offers the practical ability to accurately predict the three-dimensional arrangement of amino acids in the vast majority of proteins on a genomic scale on the basis of sequence alone [J. Jumper et al., Nature 596, 583-589 (2021) and K. Tunyasuvunakool et al., Nature 596, 590-596 (2021)]. This extraordinary achievement by Demis Hassabis and John Jumper and their coworkers at Google's DeepMind and other collaborators was built on decades of experimental protein structure determination (structural biology) as well as the gradual development of multiple strategies incorporating biologically inspired statistical approaches. But when Jumper and Hassabis added a brew of innovative neural network-based machine learning approaches to the mix, the results were explosive. Realizing the half-century-old dream of predicting protein structure has already accelerated the pace and creativity of many areas of Chemistry, Biology, and Medicine.


Assuntos
Distinções e Prêmios , Medicina , Aminoácidos , Genômica , Aprendizado de Máquina
7.
Proc Natl Acad Sci U S A ; 120(44): e2306086120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37883433

RESUMO

Munc13-1 is essential for vesicle docking and fusion at the active zone of synapses. Here, we report that Munc13-1 self-assembles into molecular clusters within diacylglycerol-rich microdomains present in phospholipid bilayers. Although the copy number of Munc13-1 molecules in these clusters has a broad distribution, a systematic Poisson analysis shows that this is most likely the result of two molecular species: monomers and mainly hexameric oligomers. Each oligomer is able to capture one vesicle independently. Hexamers have also been observed in crystals of Munc13-1 that form between opposed phospholipid bilayers [K. Grushin, R. V. Kalyana Sundaram, C. V. Sindelar, J. E. Rothman, Proc. Natl. Acad. Sci. U.S.A. 119, e2121259119 (2022)]. Mutations targeting the contacts stabilizing the crystallographic hexagons also disrupt the isolated hexamers, suggesting they are identical. Additionally, these mutations also convert vesicle binding from a cooperative to progressive mode. Our study provides an independent approach showing that Munc13-1 can form mainly hexamers on lipid bilayers each capable of vesicle capture.


Assuntos
Diglicerídeos , Proteínas SNARE , Proteínas SNARE/metabolismo , Diglicerídeos/metabolismo , Sinapses/metabolismo , Chaperonas Moleculares/metabolismo , Fosfolipídeos/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(45): e2311484120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903271

RESUMO

The synaptic vesicle protein Synaptophysin (Syp) has long been known to form a complex with the Vesicle associated soluble N-ethylmaleimide sensitive fusion protein attachment receptor (v-SNARE) Vesicle associated membrane protein (VAMP), but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully defined reconstitution and single-molecule measurements, we now report that Syp functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Syp directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Syp is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.


Assuntos
Fusão de Membrana , Vesículas Sinápticas , Sinaptofisina/genética , Sinaptofisina/metabolismo , Fusão de Membrana/fisiologia , Vesículas Sinápticas/metabolismo , Sinaptotagminas/metabolismo , Proteínas SNARE/metabolismo , Exocitose/fisiologia
9.
Proc Natl Acad Sci U S A ; 120(34): e2309516120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590407

RESUMO

Here, we introduce the full functional reconstitution of genetically validated core protein machinery (SNAREs, Munc13, Munc18, Synaptotagmin, and Complexin) for synaptic vesicle priming and release in a geometry that enables detailed characterization of the fate of docked vesicles both before and after release is triggered with Ca2+. Using this setup, we identify new roles for diacylglycerol (DAG) in regulating vesicle priming and Ca2+-triggered release involving the SNARE assembly chaperone Munc13. We find that low concentrations of DAG profoundly accelerate the rate of Ca2+-dependent release, and high concentrations reduce clamping and permit extensive spontaneous release. As expected, DAG also increases the number of docked, release-ready vesicles. Dynamic single-molecule imaging of Complexin binding to release-ready vesicles directly establishes that DAG accelerates the rate of SNAREpin assembly mediated by chaperones, Munc13 and Munc18. The selective effects of physiologically validated mutations confirmed that the Munc18-Syntaxin-VAMP2 "template" complex is a functional intermediate in the production of primed, release-ready vesicles, which requires the coordinated action of Munc13 and Munc18.


Assuntos
Diglicerídeos , Vesículas Sinápticas , Humanos , Exocitose , Transmissão Sináptica , Sinaptotagminas , Vesícula
10.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135883

RESUMO

How can exactly six SNARE complexes be assembled under each synaptic vesicle? Here we report cryo-EM crystal structures of the core domain of Munc13, the key chaperone that initiates SNAREpin assembly. The functional core of Munc13, consisting of C1-C2B-MUN-C2C (Munc13C) spontaneously crystallizes between phosphatidylserine-rich bilayers in two distinct conformations, each in a radically different oligomeric state. In the open conformation (state 1), Munc13C forms upright trimers that link the two bilayers, separating them by ∼21 nm. In the closed conformation, six copies of Munc13C interact to form a lateral hexamer elevated ∼14 nm above the bilayer. Open and closed conformations differ only by a rigid body rotation around a flexible hinge, which when performed cooperatively assembles Munc13 into a lateral hexamer (state 2) in which the key SNARE assembly-activating site of Munc13 is autoinhibited by its neighbor. We propose that each Munc13 in the lateral hexamer ultimately assembles a single SNAREpin, explaining how only and exactly six SNARE complexes are templated. We suggest that state 1 and state 2 may represent two successive states in the synaptic vesicle supply chain leading to "primed" ready-release vesicles in which SNAREpins are clamped and ready to release (state 3).


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/genética , Conformação Proteica
11.
Proc Natl Acad Sci U S A ; 119(38): e2208337119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36103579

RESUMO

Synchronous release at neuronal synapses is accomplished by a machinery that senses calcium influx and fuses the synaptic vesicle and plasma membranes to release neurotransmitters. Previous studies suggested the calcium sensor synaptotagmin (Syt) is a facilitator of vesicle docking and both a facilitator and inhibitor of fusion. On phospholipid monolayers, the Syt C2AB domain spontaneously oligomerized into rings that are disassembled by Ca2+, suggesting Syt rings may clamp fusion as membrane-separating "washers" until Ca2+-mediated disassembly triggers fusion and release [J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 111, 13966-13971 (2014)].). Here, we combined mathematical modeling with experiment to measure the mechanical properties of Syt rings and to test this mechanism. Consistent with experimental results, the model quantitatively recapitulates observed Syt ring-induced dome and volcano shapes on phospholipid monolayers and predicts rings are stabilized by anionic phospholipid bilayers or bulk solution with ATP. The selected ring conformation is highly sensitive to membrane composition and bulk ATP levels, a property that may regulate vesicle docking and fusion in ATP-rich synaptic terminals. We find the Syt molecules hosted by a synaptic vesicle oligomerize into a halo, unbound from the vesicle, but in proximity to sufficiently phosphatidylinositol 4,5-bisphosphate (PIP2)-rich plasma membrane (PM) domains, the PM-bound trans Syt ring conformation is preferred. Thus, the Syt halo serves as landing gear for spatially directed docking at PIP2-rich sites that define the active zones of exocytotic release, positioning the Syt ring to clamp fusion and await calcium. Our results suggest the Syt ring is both a Ca2+-sensitive fusion clamp and a high-fidelity sensor for directed docking.


Assuntos
Vesículas Sinápticas , Sinaptotagmina I , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/química
12.
Nat Methods ; 18(6): 688-693, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34059828

RESUMO

Understanding cellular organization demands the best possible spatial resolution in all three dimensions. In fluorescence microscopy, this is achieved by 4Pi nanoscopy methods that combine the concepts of using two opposing objectives for optimal diffraction-limited 3D resolution with switching fluorescent molecules between bright and dark states to break the diffraction limit. However, optical aberrations have limited these nanoscopes to thin samples and prevented their application in thick specimens. Here we have developed an improved iso-stimulated emission depletion nanoscope, which uses an advanced adaptive optics strategy to achieve sub-50-nm isotropic resolution of structures such as neuronal synapses and ring canals previously inaccessible in tissue. The adaptive optics scheme presented in this work is generally applicable to any microscope with a similar beam path geometry involving two opposing objectives to optimize resolution when imaging deep in aberrating specimens.


Assuntos
Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Óptica e Fotônica/métodos , Imageamento Tridimensional , Razão Sinal-Ruído
13.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495324

RESUMO

Vesicle fusion with a target membrane is a key event in cellular trafficking and ensures cargo transport within the cell and between cells. The formation of a protein complex, called SNAREpin, provides the energy necessary for the fusion process. In a three-dimensional microfluidic chip, we monitored the fusion of small vesicles with a suspended asymmetric lipid bilayer. Adding ion channels into the vesicles, our setup allows the observation of a single fusion event by electrophysiology with 10-µs precision. Intriguingly, we identified that small transient fusion pores of discrete sizes reversibly opened with a characteristic lifetime of ∼350 ms. The distribution of their apparent diameters displayed two peaks, at 0.4 ± 0.1 nm and 0.8 ± 0.2 nm. Varying the number of SNAREpins, we demonstrated that the first peak corresponds to fusion pores induced by a single SNAREpin and the second peak is associated with pores involving two SNAREpins acting simultaneously. The pore size fluctuations provide a direct estimate of the energy landscape of the pore. By extrapolation, the energy landscape for three SNAREpins does not exhibit any thermally significant energy barrier, showing that pores larger than 1.5 nm are spontaneously produced by three or more SNAREpins acting simultaneously, and expand indefinitely. Our results quantitatively explain why one SNAREpin is sufficient to open a fusion pore and more than three SNAREpins are required for cargo release. Finally, they also explain why a machinery that synchronizes three SNAREpins, or more, is mandatory to ensure fast neurotransmitter release during synaptic transmission.


Assuntos
Fusão de Membrana , Proteínas SNARE/metabolismo , Metabolismo Energético
14.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33468631

RESUMO

Controlled release of neurotransmitters stored in synaptic vesicles (SVs) is a fundamental process that is central to all information processing in the brain. This relies on tight coupling of the SV fusion to action potential-evoked presynaptic Ca2+ influx. This Ca2+-evoked release occurs from a readily releasable pool (RRP) of SVs docked to the plasma membrane (PM). The protein components involved in initial SV docking/tethering and the subsequent priming reactions which make the SV release ready are known. Yet, the supramolecular architecture and sequence of molecular events underlying SV release are unclear. Here, we use cryoelectron tomography analysis in cultured hippocampal neurons to delineate the arrangement of the exocytosis machinery under docked SVs. Under native conditions, we find that vesicles are initially "tethered" to the PM by a variable number of protein densities (∼10 to 20 nm long) with no discernible organization. In contrast, we observe exactly six protein masses, each likely consisting of a single SNAREpin with its bound Synaptotagmins and Complexin, arranged symmetrically connecting the "primed" vesicles to the PM. Our data indicate that the fusion machinery is likely organized into a highly cooperative framework during the priming process which enables rapid SV fusion and neurotransmitter release following Ca2+ influx.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Células Cultivadas , Microscopia Crioeletrônica , Hipocampo/citologia , Imageamento Tridimensional , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Vesículas Sinápticas/ultraestrutura
15.
Nat Methods ; 17(2): 225-231, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907447

RESUMO

Combining the molecular specificity of fluorescent probes with three-dimensional imaging at nanoscale resolution is critical for investigating the spatial organization and interactions of cellular organelles and protein complexes. We present a 4Pi single-molecule switching super-resolution microscope that enables ratiometric multicolor imaging of mammalian cells at 5-10-nm localization precision in three dimensions using 'salvaged fluorescence'. Imaging two or three fluorophores simultaneously, we show fluorescence images that resolve the highly convoluted Golgi apparatus and the close contacts between the endoplasmic reticulum and the plasma membrane, structures that have traditionally been the imaging realm of electron microscopy. The salvaged fluorescence approach is equally applicable in most single-objective microscopes.


Assuntos
Imagem Óptica , Frações Subcelulares/metabolismo , Animais , Humanos , Organelas/metabolismo
16.
Proc Natl Acad Sci U S A ; 117(2): 1036-1041, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31888993

RESUMO

Munc13-1 is a large multifunctional protein essential for synaptic vesicle fusion and neurotransmitter release. Its dysfunction has been linked to many neurological disorders. Evidence suggests that the MUN domain of Munc13-1 collaborates with Munc18-1 to initiate SNARE assembly, thereby priming vesicles for fast calcium-triggered vesicle fusion. The underlying molecular mechanism, however, is poorly understood. Recently, it was found that Munc18-1 catalyzes neuronal SNARE assembly through an obligate template complex intermediate containing Munc18-1 and 2 SNARE proteins-syntaxin 1 and VAMP2. Here, using single-molecule force spectroscopy, we discovered that the MUN domain of Munc13-1 stabilizes the template complex by ∼2.1 kBT. The MUN-bound template complex enhances SNAP-25 binding to the templated SNAREs and subsequent full SNARE assembly. Mutational studies suggest that the MUN-bound template complex is functionally important for SNARE assembly and neurotransmitter release. Taken together, our observations provide a potential molecular mechanism by which Munc13-1 and Munc18-1 cooperatively chaperone SNARE folding and assembly, thereby regulating synaptic vesicle fusion.


Assuntos
Chaperonas Moleculares/metabolismo , Proteínas Munc18/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas SNARE/metabolismo , Exocitose/fisiologia , Cinética , Fusão de Membrana/fisiologia , Chaperonas Moleculares/química , Proteínas Munc18/química , Proteínas do Tecido Nervoso/química , Neurônios/metabolismo , Pinças Ópticas , Ligação Proteica , Domínios Proteicos , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/química , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(7): 3819-3827, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015138

RESUMO

Synaptotagmin 1 (Syt1) synchronizes neurotransmitter release to action potentials (APs) acting as the fast Ca2+ release sensor and as the inhibitor (clamp) of spontaneous and delayed asynchronous release. While the Syt1 Ca2+ activation mechanism has been well-characterized, how Syt1 clamps transmitter release remains enigmatic. Here we show that C2B domain-dependent oligomerization provides the molecular basis for the Syt1 clamping function. This follows from the investigation of a designed mutation (F349A), which selectively destabilizes Syt1 oligomerization. Using a combination of fluorescence imaging and electrophysiology in neocortical synapses, we show that Syt1F349A is more efficient than wild-type Syt1 (Syt1WT) in triggering synchronous transmitter release but fails to clamp spontaneous and synaptotagmin 7 (Syt7)-mediated asynchronous release components both in rescue (Syt1-/- knockout background) and dominant-interference (Syt1+/+ background) conditions. Thus, we conclude that Ca2+-sensitive Syt1 oligomers, acting as an exocytosis clamp, are critical for maintaining the balance among the different modes of neurotransmitter release.


Assuntos
Neurotransmissores/metabolismo , Sinaptotagmina I/metabolismo , Animais , Exocitose , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Sinapses/metabolismo , Transmissão Sináptica , Sinaptotagmina I/genética
18.
Am J Hum Genet ; 104(4): 721-730, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929742

RESUMO

VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved residues within the C terminus of the VAMP2 SNARE motif. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms. The genetic synaptopathy caused by VAMP2 de novo mutations highlights the key roles of this gene in human brain development and function.


Assuntos
Deficiência Intelectual/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , Neurônios/metabolismo , Sinapses/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Adolescente , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Epilepsia/metabolismo , Exocitose , Feminino , Heterozigoto , Humanos , Lipídeos/química , Imageamento por Ressonância Magnética , Masculino , Fusão de Membrana , Transtornos dos Movimentos/genética , Mutação , Transtornos do Neurodesenvolvimento/metabolismo , Neurotransmissores/metabolismo , Fenótipo , Domínios Proteicos , Proteínas R-SNARE/metabolismo , Proteína 2 Associada à Membrana da Vesícula/fisiologia
19.
Proc Natl Acad Sci U S A ; 116(7): 2435-2442, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30700546

RESUMO

SNARE proteins zipper to form complexes (SNAREpins) that power vesicle fusion with target membranes in a variety of biological processes. A single SNAREpin takes about 1 s to fuse two bilayers, yet a handful can ensure release of neurotransmitters from synaptic vesicles much faster: in a 10th of a millisecond. We propose that, similar to the case of muscle myosins, the ultrafast fusion results from cooperative action of many SNAREpins. The coupling originates from mechanical interactions induced by confining scaffolds. Each SNAREpin is known to have enough energy to overcome the fusion barrier of 25-[Formula: see text]; however, the fusion barrier only becomes relevant when the SNAREpins are nearly completely zippered, and from this state, each SNAREpin can deliver only a small fraction of this energy as mechanical work. Therefore, they have to act cooperatively, and we show that at least three of them are needed to ensure fusion in less than a millisecond. However, to reach the prefusion state collectively, starting from the experimentally observed half-zippered metastable state, the SNAREpins have to mechanically synchronize, which takes more time as the number of SNAREpins increases. Incorporating this somewhat counterintuitive idea in a simple coarse-grained model results in the prediction that there should be an optimum number of SNAREpins for submillisecond fusion: three to six over a wide range of parameters. Interestingly, in situ cryoelectron microscope tomography has very recently shown that exactly six SNAREpins participate in the fusion of each synaptic vesicle. This number is in the range predicted by our theory.


Assuntos
Proteínas SNARE/fisiologia , Animais , Microscopia Crioeletrônica , Fusão de Membrana , Modelos Biológicos , Ligação Proteica , Proteínas SNARE/metabolismo
20.
Proc Natl Acad Sci U S A ; 115(32): E7624-E7631, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038018

RESUMO

Regulated exocytosis, which underlies many intercellular signaling events, is a tightly controlled process often triggered by calcium ion(s) (Ca2+). Despite considerable insight into the central components involved, namely, the core fusion machinery [soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)] and the principal Ca2+ sensor [C2-domain proteins like synaptotagmin (Syt)], the molecular mechanism of Ca2+-dependent release has been unclear. Here, we report that the Ca2+-sensitive oligomers of Syt1, a conserved structural feature among several C2-domain proteins, play a critical role in orchestrating Ca2+-coupled vesicular release. This follows from pHluorin-based imaging of single-vesicle exocytosis in pheochromocytoma (PC12) cells showing that selective disruption of Syt1 oligomerization using a structure-directed mutation (F349A) dramatically increases the normally low levels of constitutive exocytosis to effectively occlude Ca2+-stimulated release. We propose a parsimonious model whereby Ca2+-sensitive oligomers of Syt (or a similar C2-domain protein) assembled at the site of docking physically block spontaneous fusion until disrupted by Ca2+ Our data further suggest Ca2+-coupled vesicular release is triggered by removal of the inhibition, rather than by direct activation of the fusion machinery.


Assuntos
Cálcio/metabolismo , Exocitose , Fusão de Membrana/fisiologia , Multimerização Proteica/fisiologia , Sinaptotagmina I/metabolismo , Animais , Cátions Bivalentes/metabolismo , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Imunofluorescência , Proteínas de Fluorescência Verde/química , Microscopia Eletrônica , Mutação , Células PC12 , Ligação Proteica/fisiologia , Ratos , Proteínas Recombinantes/metabolismo , Sinaptotagmina I/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa