Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Anal Chem ; 83(22): 8439-47, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21932784

RESUMO

The feasibility of implementing pyrosequencing chemistry within droplets using electrowetting-based digital microfluidics is reported. An array of electrodes patterned on a printed-circuit board was used to control the formation, transportation, merging, mixing, and splitting of submicroliter-sized droplets contained within an oil-filled chamber. A three-enzyme pyrosequencing protocol was implemented in which individual droplets contained enzymes, deoxyribonucleotide triphosphates (dNTPs), and DNA templates. The DNA templates were anchored to magnetic beads which enabled them to be thoroughly washed between nucleotide additions. Reagents and protocols were optimized to maximize signal over background, linearity of response, cycle efficiency, and wash efficiency. As an initial demonstration of feasibility, a portion of a 229 bp Candida parapsilosis template was sequenced using both a de novo protocol and a resequencing protocol. The resequencing protocol generated over 60 bp of sequence with 100% sequence accuracy based on raw pyrogram levels. Excellent linearity was observed for all of the homopolymers (two, three, or four nucleotides) contained in the C. parapsilosis sequence. With improvements in microfluidic design it is expected that longer reads, higher throughput, and improved process integration (i.e., "sample-to-sequence" capability) could eventually be achieved using this low-cost platform.


Assuntos
DNA Fúngico/análise , DNA Fúngico/genética , Técnicas Analíticas Microfluídicas/métodos , Análise de Sequência de DNA/métodos , Sequência de Bases , Candida/genética , Desoxirribonucleotídeos/análise , Desoxirribonucleotídeos/genética , Desoxirribonucleotídeos/metabolismo , Eletrodos , Enzimas/química , Enzimas/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Sequência de DNA/instrumentação , Moldes Genéticos
2.
Clin Chem ; 57(10): 1444-51, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21859904

RESUMO

BACKGROUND: Newborn screening for lysosomal storage diseases (LSDs) has been gaining considerable interest owing to the availability of enzyme replacement therapies. We present a digital microfluidic platform to perform rapid, multiplexed enzymatic analysis of acid α-glucosidase (GAA) and acid α-galactosidase to screen for Pompe and Fabry disorders. The results were compared with those obtained using standard fluorometric methods. METHODS: We performed bench-based, fluorometric enzymatic analysis on 60 deidentified newborn dried blood spots (DBSs), plus 10 Pompe-affected and 11 Fabry-affected samples, at Duke Biochemical Genetics Laboratory using a 3-mm punch for each assay and an incubation time of 20 h. We used a digital microfluidic platform to automate fluorometric enzymatic assays at Advanced Liquid Logic Inc. using extract from a single punch for both assays, with an incubation time of 6 h. Assays were also performed with an incubation time of 1 h. RESULTS: Assay results were generally comparable, although mean enzymatic activity for GAA using microfluidics was approximately 3 times higher than that obtained using bench-based methods, which could be attributed to higher substrate concentration. Clear separation was observed between the normal and affected samples at both 6- and 1-h incubation times using digital microfluidics. CONCLUSIONS: A digital microfluidic platform compared favorably with a clinical reference laboratory to perform enzymatic analysis in DBSs for Pompe and Fabry disorders. This platform presents a new technology for a newborn screening laboratory to screen LSDs by fully automating all the liquid-handling operations in an inexpensive system, providing rapid results.


Assuntos
Ensaios Enzimáticos Clínicos/instrumentação , Doença de Fabry/diagnóstico , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , alfa-Galactosidase/sangue , alfa-Glucosidases/sangue , Fluorometria , Humanos , Recém-Nascido , Triagem Neonatal
3.
Anal Chem ; 82(6): 2310-6, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20151681

RESUMO

This paper details the development of a digital microfluidic platform for multiplexed real-time polymerase chain reactions (PCR). Liquid samples in discrete droplet format are programmably manipulated upon an electrode array by the use of electrowetting. Rapid PCR thermocycling is performed in a closed-loop flow-through format where for each cycle the reaction droplets are cyclically transported between different temperature zones within an oil-filled cartridge. The cartridge is fabricated using low-cost printed-circuit-board technology and is intended to be a single-use disposable device. The PCR system exhibited remarkable amplification efficiency of 94.7%. To test its potential application in infectious diseases, this novel PCR system reliably detected diagnostic DNA levels of methicillin-resistant Staphylococcus aureus (MRSA), Mycoplasma pneumoniae , and Candida albicans . Amplification of genomic DNA samples was consistently repeatable across multiple PCR loops both within and between cartridges. In addition, simultaneous real-time PCR amplification of both multiple different samples and multiple different targets on a single cartridge was demonstrated. A novel method of PCR speed optimization using variable cycle times has also been proposed and proven feasible. The versatile system includes magnetic bead handling capability, which was applied to the analysis of simulated clinical samples that were prepared from whole blood using a magnetic bead capture protocol. Other salient features of this versatile digital microfluidic PCR system are also discussed, including the configurability and scalability of microfluidic operations, instrument portability, and substrate-level integration with other pre- and post-PCR processes.


Assuntos
DNA Bacteriano/análise , DNA Fúngico/análise , Staphylococcus aureus Resistente à Meticilina/genética , Microfluídica/instrumentação , Reação em Cadeia da Polimerase/instrumentação , Candida albicans/genética , DNA Bacteriano/genética , DNA Fúngico/genética , Desenho de Equipamento , Mycoplasma pneumoniae/genética
4.
Diagn Microbiol Infect Dis ; 67(1): 22-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20227222

RESUMO

Rapid, accurate diagnosis of community-acquired pneumonia (CAP) due to Mycoplasma pneumoniae is compromised by low sensitivity of culture and serology. Polymerase chain reaction (PCR) has emerged as a sensitive method to detect M. pneumoniae DNA in clinical specimens. However, conventional real-time PCR is not cost-effective for routine or outpatient implementation. Here, we evaluate a novel microfluidic real-time PCR platform (Advanced Liquid Logic, Research Triangle Park, NC) that is rapid, portable, and fully automated. We enrolled patients with CAP and extracted DNA from nasopharyngeal wash (NPW) specimens using a biotinylated capture probe and streptavidin-coupled magnetic beads. Each extract was tested for M. pneumoniae-specific DNA by real-time PCR on both conventional and microfluidic platforms using Taqman probe and primers. Three of 59 (5.0%) NPWs were positive, and agreement between the methods was 98%. The microfluidic platform was equally sensitive but 3 times faster and offers an inexpensive and convenient diagnostic test for microbial DNA.


Assuntos
Técnicas Bacteriológicas/métodos , Microfluídica/métodos , Técnicas de Diagnóstico Molecular/métodos , Mycoplasma pneumoniae/isolamento & purificação , Pneumonia por Mycoplasma/diagnóstico , Reação em Cadeia da Polimerase/métodos , Automação , Infecções Comunitárias Adquiridas/microbiologia , Humanos , Mycoplasma pneumoniae/genética , Nasofaringe/microbiologia , Pneumonia por Mycoplasma/microbiologia , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa