Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nature ; 591(7849): 293-299, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33494095

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-a new coronavirus that has led to a worldwide pandemic1-has a furin cleavage site (PRRAR) in its spike protein that is absent in other group-2B coronaviruses2. To explore whether the furin cleavage site contributes to infection and pathogenesis in this virus, we generated a mutant SARS-CoV-2 that lacks the furin cleavage site (ΔPRRA). Here we report that replicates of ΔPRRA SARS-CoV-2 had faster kinetics, improved fitness in Vero E6 cells and reduced spike protein processing, as compared to parental SARS-CoV-2. However, the ΔPRRA mutant had reduced replication in a human respiratory cell line and was attenuated in both hamster and K18-hACE2 transgenic mouse models of SARS-CoV-2 pathogenesis. Despite reduced disease, the ΔPRRA mutant conferred protection against rechallenge with the parental SARS-CoV-2. Importantly, the neutralization values of sera from patients with coronavirus disease 2019 (COVID-19) and monoclonal antibodies against the receptor-binding domain of SARS-CoV-2 were lower against the ΔPRRA mutant than against parental SARS-CoV-2, probably owing to an increased ratio of particles to plaque-forming units in infections with the former. Together, our results demonstrate a critical role for the furin cleavage site in infection with SARS-CoV-2 and highlight the importance of this site for evaluating the neutralization activities of antibodies.


Assuntos
COVID-19/virologia , Furina/metabolismo , Mutação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , COVID-19/patologia , COVID-19/fisiopatologia , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Feminino , Humanos , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Pneumopatias/virologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteólise , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Replicação Viral/genética
2.
J Virol ; 98(3): e0182023, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38329331

RESUMO

Multi-segmented viruses often multimerize their genomic segments to ensure efficient and stoichiometric packaging of the correct genetic cargo. In the bipartite Nodaviridae family, genome heterodimerization is also observed and conserved among different species. However, the nucleotide composition and biological function for this heterodimer remain unclear. Using Flock House virus as a model system, we developed a next-generation sequencing approach ("XL-ClickSeq") to probe heterodimer site sequences. We identified an intermolecular base-pairing site which contributed to heterodimerization in both wild-type and defective virus particles. Mutagenic disruption of this heterodimer site exhibited significant deficiencies in genome packaging and encapsidation specificity to viral genomic RNAs. Furthermore, the disruption of this intermolecular interaction directly impacts the thermostability of the mature virions. These results demonstrate that the intermolecular RNA-RNA interactions within the encapsidated genome of an RNA virus have an important role on virus particle integrity and thus may impact its transmission to a new host.IMPORTANCEFlock House virus is a member of Nodaviridae family of viruses, which provides a well-studied model virus for non-enveloped RNA virus assembly, cell entry, and replication. The Flock House virus genome consists of two separate RNA molecules, which can form a heterodimer upon heating of virus particles. Although similar RNA dimerization is utilized by other viruses (such as retroviruses) as a packaging mechanism and is conserved among Nodaviruses, the role of heterodimerization in the Nodavirus replication cycle is unclear. In this research, we identified the RNA sequences contributing to Flock House virus genome heterodimerization and discovered that such RNA-RNA interaction plays an essential role in virus packaging efficiency and particle integrity. This provides significant insight into how the interaction of packaged viral RNA may have a broader impact on the structural and functional properties of virus particles.


Assuntos
Dimerização , Genoma Viral , Nodaviridae , RNA Viral , Termodinâmica , Empacotamento do Genoma Viral , Vírion , Animais , Pareamento de Bases/genética , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Nodaviridae/química , Nodaviridae/genética , Nodaviridae/crescimento & desenvolvimento , Infecções por Vírus de RNA/transmissão , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Empacotamento do Genoma Viral/genética , Vírion/química , Vírion/genética , Vírion/metabolismo
3.
Nucleic Acids Res ; 51(10): 5210-5227, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37070191

RESUMO

How multi-segmented double-stranded RNA (dsRNA) viruses correctly incorporate their genomes into their capsids remains unclear for many viruses, including Bluetongue virus (BTV), a Reoviridae member, with a genome of 10 segments. To address this, we used an RNA-cross-linking and peptide-fingerprinting assay (RCAP) to identify RNA binding sites of the inner capsid protein VP3, the viral polymerase VP1 and the capping enzyme VP4. Using a combination of mutagenesis, reverse genetics, recombinant proteins and in vitro assembly, we validated the importance of these regions in virus infectivity. Further, to identify which RNA segments and sequences interact with these proteins, we used viral photo-activatable ribonucleoside crosslinking (vPAR-CL) which revealed that the larger RNA segments (S1-S4) and the smallest segment (S10) have more interactions with viral proteins than the other smaller segments. Additionally, using a sequence enrichment analysis we identified an RNA motif of nine bases that is shared by the larger segments. The importance of this motif for virus replication was confirmed by mutagenesis followed by virus recovery. We further demonstrated that these approaches could be applied to a related Reoviridae member, rotavirus (RV), which has human epidemic impact, offering the possibility of novel intervention strategies for a human pathogen.


Assuntos
Vírus Bluetongue , Capsídeo , RNA Viral , Proteínas Virais , Animais , Humanos , Vírus Bluetongue/química , Vírus Bluetongue/metabolismo , Capsídeo/química , Capsídeo/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Replicação Viral , Proteínas Virais/química , Proteínas Virais/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(32): e2205690119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35881779

RESUMO

The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here, we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated, and disruption of its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site-the FCS, loop length, and glycosylation-are required for efficient SARS-CoV-2 replication and pathogenesis.


Assuntos
COVID-19 , Furina , Proteólise , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Motivos de Aminoácidos/genética , Animais , COVID-19/virologia , Chlorocebus aethiops , Furina/química , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Replicação Viral/genética
5.
J Virol ; 97(2): e0153222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36722972

RESUMO

Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'-O-methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'-O-MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both in vitro and in vivo, using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive than wild-type SARS-CoV-2 to type I interferon (IFN-I) in vitro. Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'-O-methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, an MTase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment and attenuates viral replication. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a target for future antiviral therapies. IMPORTANCE Similar to other coronaviruses, disruption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP16 function attenuates viral replication in a type I interferon-dependent manner. In vivo, our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1 but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'-O-methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Peptídeos e Proteínas de Sinalização Intracelular , SARS-CoV-2 , Proteínas não Estruturais Virais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , COVID-19/virologia , Interferon Tipo I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/metabolismo , Animais , Cricetinae
6.
PLoS Pathog ; 18(6): e1010627, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35728038

RESUMO

While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo. Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral 'RG' motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2's continued adaptation to human infection.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Quinase 3 da Glicogênio Sintase , Humanos , Mutação , Nucleocapsídeo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
7.
PLoS Biol ; 19(11): e3001284, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735434

RESUMO

The emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of Coronavirus Disease 2019 (COVID-19) have been hampered by the lack of robust mouse models. To overcome this barrier, we used a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2. Incorporating key mutations found in SARS-CoV-2 variants, this model recapitulates critical elements of human infection including viral replication in the lung, immune cell infiltration, and significant in vivo disease. Importantly, mouse adaptation of SARS-CoV-2 does not impair replication in human airway cells and maintains antigenicity similar to human SARS-CoV-2 strains. Coupled with the incorporation of mutations found in variants of concern, CMA3p20 offers several advantages over other mouse-adapted SARS-CoV-2 strains. Using this model, we demonstrate that SARS-CoV-2-infected mice are protected from lethal challenge with the original Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), suggesting immunity from heterologous Coronavirus (CoV) strains. Together, the results highlight the use of this mouse model for further study of SARS-CoV-2 infection and disease.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Animais , COVID-19/patologia , Vacinas contra COVID-19/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Genética Reversa , Inoculações Seriadas , Replicação Viral
8.
Nucleic Acids Res ; 50(17): e98, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-35736235

RESUMO

Alternative splicing (AS) is necessary for viral proliferation in host cells and a critical regulatory component of viral gene expression. Conventional RNA-seq approaches provide incomplete coverage of AS due to their short read lengths and are susceptible to biases and artifacts introduced in prevailing library preparation methodologies. Moreover, viral splicing studies are often conducted separately from host cell transcriptome analysis, precluding an assessment of the viral manipulation of host splicing machinery. To address current limitations, we developed a quantitative full-length direct cDNA sequencing strategy to simultaneously profile viral and host cell transcripts. This nanopore-based approach couples processive reverse transcriptases with a novel one-step chemical ablation of 3' RNA ends (termed CASPR), which decreases ribosomal RNA reads and enriches polyadenylated coding sequences. We extensively validate our approach using synthetic reference transcripts and show that CASPR doubles the breadth of coverage per transcript and increases detection of long transcripts (>4 kb), while being functionally equivalent to PolyA+ selection for transcript quantification. We used our approach to interrogate host cell and HIV-1 transcript dynamics during viral reactivation and identified novel putative HIV-1 host factors containing exon skipping or novel intron retentions and delineated the HIV-1 transcriptional state associated with these differentially regulated host factors.


Assuntos
Processamento Alternativo , HIV-1/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA Complementar/genética , RNA Polimerases Dirigidas por DNA/genética , Perfilação da Expressão Gênica/métodos , Infecções por HIV/virologia , Poli A , RNA Ribossômico , Análise de Sequência de RNA/métodos , Transcriptoma
9.
Nucleic Acids Res ; 50(7): e41, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35018461

RESUMO

Adaptation of viruses to their environments occurs through the acquisition of both novel single-nucleotide variants (SNV) and recombination events including insertions, deletions, and duplications. The co-occurrence of SNVs in individual viral genomes during their evolution has been well-described. However, unlike covariation of SNVs, studying the correlation between recombination events with each other or with SNVs has been hampered by their inherent genetic complexity and a lack of bioinformatic tools. Here, we expanded our previously reported CoVaMa pipeline (v0.1) to measure linkage disequilibrium between recombination events and SNVs within both short-read and long-read sequencing datasets. We demonstrate this approach using long-read nanopore sequencing data acquired from Flock House virus (FHV) serially passaged in vitro. We found SNVs that were either correlated or anti-correlated with large genomic deletions generated by nonhomologous recombination that give rise to Defective-RNAs. We also analyzed NGS data from longitudinal HIV samples derived from a patient undergoing antiretroviral therapy who proceeded to virological failure. We found correlations between insertions in the p6Gag and mutations in Gag cleavage sites. This report confirms previous findings and provides insights on novel associations between SNVs and specific recombination events within the viral genome and their role in viral evolution.


Assuntos
Variação Genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Recombinação Genética , Vírus de DNA/genética , Genoma Viral/genética , Genômica , Humanos
10.
J Biol Chem ; 298(5): 101924, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35413291

RESUMO

The genomes of RNA viruses present an astonishing source of both sequence and structural diversity. From intracellular viral RNA-host interfaces to interactions between the RNA genome and structural proteins in virus particles themselves, almost the entire viral lifecycle is accompanied by a myriad of RNA-protein interactions that are required to fulfill their replicative potential. It is therefore important to characterize such rich and dynamic collections of viral RNA-protein interactions to understand virus evolution and their adaptation to their hosts and environment. Recent advances in next-generation sequencing technologies have allowed the characterization of viral RNA-protein interactions, including both transient and conserved interactions, where molecular and structural approaches have fallen short. In this review, we will provide a methodological overview of the high-throughput techniques used to study viral RNA-protein interactions, their biochemical mechanisms, and how they evolved from classical methods as well as one another. We will discuss how different techniques have fueled virus research to characterize how viral RNA and proteins interact, both locally and on a global scale. Finally, we will present examples on how these techniques influence the studies of clinically important pathogens such as HIV-1 and SARS-CoV-2.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Proteínas , RNA Viral , HIV-1/genética , HIV-1/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Proteínas/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética
11.
Bioinformatics ; 38(18): 4420-4422, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35904541

RESUMO

MOTIVATION: Recombination is an essential driver of virus evolution and adaption, giving rise to new chimeric viruses, structural variants, sub-genomic RNAs and defective RNAs. Next-generation sequencing (NGS) of virus samples, either from experimental or clinical settings, has revealed a complex distribution of recombination events that contributes to intrahost diversity. We and others have previously developed alignment tools to discover and map these diverse recombination events in NGS data. However, there is no standard for data visualization to contextualize events of interest, and downstream analysis often requires bespoke coding. RESULTS: We present ViReMaShiny, a web-based application built using the R Shiny framework to allow interactive exploration and point-and-click visualization of viral recombination data provided in BED format generated by computational pipelines such as ViReMa (Viral-Recombination-Mapper). AVAILABILITY AND IMPLEMENTATION: The application is hosted at https://routhlab.shinyapps.io/ViReMaShiny/ with associated documentation at https://jayeung12.github.io/. Code is available at https://github.com/routhlab/ViReMaShiny. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Genômica , Recombinação Genética
12.
PLoS Pathog ; 17(1): e1009226, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465137

RESUMO

Recombination is proposed to be critical for coronavirus (CoV) diversity and emergence of SARS-CoV-2 and other zoonotic CoVs. While RNA recombination is required during normal CoV replication, the mechanisms and determinants of CoV recombination are not known. CoVs encode an RNA proofreading exoribonuclease (nsp14-ExoN) that is distinct from the CoV polymerase and is responsible for high-fidelity RNA synthesis, resistance to nucleoside analogues, immune evasion, and virulence. Here, we demonstrate that CoVs, including SARS-CoV-2, MERS-CoV, and the model CoV murine hepatitis virus (MHV), generate extensive and diverse recombination products during replication in culture. We show that the MHV nsp14-ExoN is required for native recombination, and that inactivation of ExoN results in decreased recombination frequency and altered recombination products. These results add yet another critical function to nsp14-ExoN, highlight the uniqueness of the evolved coronavirus replicase, and further emphasize nsp14-ExoN as a central, completely conserved, and vulnerable target for inhibitors and attenuation of SARS-CoV-2 and future emerging zoonotic CoVs.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Exorribonucleases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/virologia , Infecções por Coronavirus/virologia , Exorribonucleases/genética , Humanos , Recombinação Genética/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Proteínas não Estruturais Virais/genética , Replicação Viral/genética
13.
Nucleic Acids Res ; 49(12): e70, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33849057

RESUMO

Technical challenges remain in the sequencing of RNA viruses due to their high intra-host diversity. This bottleneck is particularly pronounced when interrogating long-range co-evolved genetic interactions given the read-length limitations of next-generation sequencing platforms. This has hampered the direct observation of these genetic interactions that code for protein-protein interfaces with relevance in both drug and vaccine development. Here we overcome these technical limitations by developing a nanopore-based long-range viral sequencing pipeline that yields accurate single molecule sequences of circulating virions from clinical samples. We demonstrate its utility in observing the evolution of individual HIV Gag-Pol genomes in response to antiviral pressure. Our pipeline, called Multi-read Hairpin Mediated Error-correction Reaction (MrHAMER), yields >1000s of viral genomes per sample at 99.9% accuracy, maintains the original proportion of sequenced virions present in a complex mixture, and allows the detection of rare viral genomes with their associated mutations present at <1% frequency. This method facilitates scalable investigation of genetic correlates of resistance to both antiviral therapy and immune pressure and enables the identification of novel host-viral and viral-viral interfaces that can be modulated for therapeutic benefit.


Assuntos
HIV/genética , Sequenciamento por Nanoporos/métodos , DNA Complementar , Farmacorresistência Viral/genética , Evolução Molecular , Proteínas de Fusão gag-pol/genética , Genoma Viral , HIV/isolamento & purificação , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
14.
J Zoo Wildl Med ; 54(3): 600-606, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37817627

RESUMO

Full medical histories from captive Alaotran gentle lemurs or Bandro (Hapalemur alaotrensis) > 1 yr old that died between 1990 and 2016 were requested from holding institutions. Eighty-six individuals died during the period analyzed. Full postmortem reports were received from 40 (46.5%) animals from 16 different institutions across Europe (15) and North America (1). Eighteen animals (45%) showed azotemia within three months of death, with accompanying histological renal lesions. Another 17 (42.5%) showed histological renal lesions, but no renal function assessment was carried out antemortem, or results were within normal limits. Only five animals (12.5%) showed no renal lesions. Of the 35 (87.5%) animals with histological renal lesions, 18 were females, and 17 were males, 11 were wild caught, and 24 were captive born. Twenty-seven animals were euthanized, seven were found dead, and in one case, no details were provided. Sixty-four blood samples from 22 animals were available. Azotemia was observed on average 407 d antemortem, with a case observed as early as 2,318 d antemortem. Twenty-nine urinalyses from 12 animals were carried out antemortem. All animals showed hematuria or proteinuria in at least one antemortem sample. A pH decrease from 8.5 to 5.0 was observed in two animals antemortem. Gross renal lesions most frequently reported were irregular surface (n = 14), abnormal shape (n = 12), and/or presence of cysts (n = 9). The most common histological lesions were interstitial nephritis (n = 25), interstitial fibrosis (n = 26), tubule dilation (n = 16), and glomerulosclerosis (n = 12). Development of additional diagnostic tools, standardization of ante- and postmortem diagnostic protocols, and further investigation into potential etiologies, such as diets offered in captivity and genetic factors, should be considered as the next steps for the veterinary management of this species in captivity.


Assuntos
Azotemia , Nefropatias , Lemuridae , Masculino , Feminino , Animais , Azotemia/patologia , Azotemia/veterinária , Rim/patologia , Nefropatias/veterinária , Nefropatias/patologia
15.
Nucleic Acids Res ; 48(2): e12, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31799606

RESUMO

To characterize RNA-capsid binding sites genome-wide within mature RNA virus particles, we have developed a Next-Generation Sequencing (NGS) platform: viral Photo-Activatable Ribonucleoside CrossLinking (vPAR-CL). In vPAR-CL, 4-thiouridine is incorporated into the encapsidated genomes of virus particles and subsequently UV-crosslinked to adjacent capsid proteins. We demonstrate that vPAR-CL can readily and reliably identify capsid binding sites in genomic viral RNA by detecting crosslink-specific uridine to cytidine transitions in NGS data. Using Flock House virus (FHV) as a model system, we identified highly consistent and significant vPAR-CL signals across virus RNA genome, indicating a clear tropism of the encapsidated RNA genome. Certain interaction sites coincide with previously identified functional RNA motifs. We additionally performed dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) to generate a high-resolution profile of single-stranded genomic RNA inside viral particles. Combining vPAR-CL and DMS-MaPseq reveals that the predominant RNA-capsid interaction sites favored double-stranded RNA regions. We disrupted secondary structures associated with vPAR-CL sites using synonymous mutations, resulting in varied effects to virus replication, propagation and packaging. Certain mutations showed substantial deficiency in virus replication, suggesting these RNA-capsid sites are multifunctional. These provide further evidence to support that FHV packaging and replication are highly coordinated and inter-dependent events.


Assuntos
Proteínas do Capsídeo/genética , Nodaviridae/genética , RNA Viral/genética , Replicação Viral/genética , Sítios de Ligação , Capsídeo/química , Proteínas do Capsídeo/química , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Nodaviridae/química , Conformação de Ácido Nucleico , Estrutura Secundária de Proteína , Vírus de RNA/química , Vírus de RNA/genética , RNA Viral/química , Vírion/química , Vírion/genética , Montagem de Vírus/genética
16.
J Cell Mol Med ; 25(17): 8352-8362, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302435

RESUMO

Alternative splicing (AS) contributes to the diversity of the proteome by producing multiple isoforms from a single gene. Although short-read RNA-sequencing methods have been the gold standard for determining AS patterns of genes, they have a difficulty in defining full-length mRNA isoforms assembled using different exon combinations. Tropomyosin 1 (TPM1) is an actin-binding protein required for cytoskeletal functions in non-muscle cells and for contraction in muscle cells. Tpm1 undergoes AS regulation to generate muscle versus non-muscle TPM1 protein isoforms with distinct physiological functions. It is unclear which full-length Tpm1 isoforms are produced via AS and how they are regulated during heart development. To address these, we utilized nanopore long-read cDNA sequencing without gene-specific PCR amplification. In rat hearts, we identified full-length Tpm1 isoforms composed of distinct exons with specific exon linkages. We showed that Tpm1 undergoes AS transitions during embryonic heart development such that muscle-specific exons are connected generating predominantly muscle-specific Tpm1 isoforms in adult hearts. We found that the RNA-binding protein RBFOX2 controls AS of rat Tpm1 exon 6a, which is important for cooperative actin binding. Furthermore, RBFOX2 regulates Tpm1 AS of exon 6a antagonistically to the RNA-binding protein PTBP1. In sum, we defined full-length Tpm1 isoforms with different exon combinations that are tightly regulated during cardiac development and provided insights into the regulation of Tpm1 AS by RNA-binding proteins. Our results demonstrate that nanopore sequencing is an excellent tool to determine full-length AS variants of muscle-enriched genes.

17.
Nat Methods ; 14(3): 283-286, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28114288

RESUMO

Investigation of the structure, assembly and function of protein-nucleic acid macromolecular machines requires multidimensional molecular and structural biology approaches. We describe modifications to an Orbitrap mass spectrometer, enabling high-resolution native MS analysis of 0.8- to 2.3-MDa prokaryotic 30S, 50S and 70S ribosome particles and the 9-MDa Flock House virus. The instrument's improved mass range and sensitivity readily exposes unexpected binding of the ribosome-associated protein SRA.


Assuntos
Escherichia coli/citologia , Espectrometria de Massas/métodos , Nodaviridae/ultraestrutura , RNA Longo não Codificante/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura , Espectrometria de Massas/instrumentação , Nodaviridae/genética , Ligação Proteica/fisiologia , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/genética
18.
Methods ; 155: 20-29, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30625385

RESUMO

The use of RNA-seq as a generalized tool to measure the differential expression of genes has essentially replaced the use of the microarray. Despite the acknowledged technical advantages to this approach, RNA-seq library preparation remains mostly conducted by core facilities rather than in the laboratory due to the infrastructure, expertise and time required per sample. We have recently described two 'click-chemistry' based library construction methods termed ClickSeq and Poly(A)-ClickSeq (PAC-seq) as alternatives to conventional RNA-seq that are both cost effective and rely on straightforward reagents readily available to most labs. ClickSeq is random-primed and can sequence any (unfragmented) RNA template, while PAC-seq is targeted to poly(A) tails of mRNAs. Here, we further develop PAC-seq as a platform that allows for simultaneous mapping of poly(A) sites and the measurement of differential expression of genes. We provide a detailed protocol, descriptions of appropriate computational pipelines, and a proof-of-principle dataset to illustrate the technique. PAC-seq offers a unique advantage over other 3' end mapping protocols in that it does not require additional purification, selection, or fragmentation steps allowing sample preparation directly from crude total cellular RNA. We have shown that PAC-seq is able to accurately and sensitively count transcripts for differential gene expression analysis, as well as identify alternative poly(A) sites and determine the precise nucleotides of the poly(A) tail boundaries.


Assuntos
Química Click/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Insetos/genética , Poli A/genética , RNA Mensageiro/genética , Região 3'-Flanqueadora , Animais , Células Cultivadas , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Biblioteca Gênica , Genoma de Inseto , Proteínas de Insetos/metabolismo , Poli A/química , Poli A/metabolismo , Poliadenilação , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/estatística & dados numéricos
19.
PLoS Pathog ; 13(5): e1006365, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28475646

RESUMO

Defective-Interfering RNAs (DI-RNAs) have long been known to play an important role in virus replication and transmission. DI-RNAs emerge during virus passaging in both cell-culture and their hosts as a result of non-homologous RNA recombination. However, the principles of DI-RNA emergence and their subsequent evolution have remained elusive. Using a combination of long- and short-read Next-Generation Sequencing, we have characterized the formation of DI-RNAs during serial passaging of Flock House virus (FHV) in cell-culture over a period of 30 days in order to elucidate the pathways and potential mechanisms of DI-RNA emergence and evolution. For short-read RNAseq, we employed 'ClickSeq' due to its ability to sensitively and confidently detect RNA recombination events with nucleotide resolution. In parallel, we used the Oxford Nanopore Technologies's (ONT) MinION to resolve full-length defective and wild-type viral genomes. Together, these accurately resolve both rare and common RNA recombination events, determine the correlation between recombination events, and quantifies the relative abundance of different DI-RNAs throughout passaging. We observe the formation of a diverse pool of defective RNAs at each stage of viral passaging. However, many of these 'intermediate' species, while present in early stages of passaging, do not accumulate. After approximately 9 days of passaging we observe the rapid accumulation of DI-RNAs with a correlated reduction in specific infectivity and with the Nanopore data find that DI-RNAs are characterized by multiple RNA recombination events. This suggests that intermediate DI-RNA species are not competitive and that multiple recombination events interact epistatically to confer 'mature' DI-RNAs with their selective advantage allowing for their rapid accumulation. Alternatively, it is possible that mature DI-RNA species are generated in a single event involving multiple RNA rearrangements. These insights have important consequences for our understanding of the mechanisms, determinants and limitations in the emergence and evolution of DI-RNAs.


Assuntos
Vírus Defeituosos/genética , Evolução Molecular , Genoma Viral/genética , Nodaviridae/genética , RNA Interferente Pequeno/genética , Replicação Viral/genética , Animais , Drosophila/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Nanoporos , RNA , RNA Interferente Pequeno/química , RNA Viral/química , RNA Viral/genética , Análise de Sequência de RNA
20.
Nucleic Acids Res ; 45(12): e112, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28449108

RESUMO

The recent emergence of alternative polyadenylation (APA) as an engine driving transcriptomic diversity has stimulated the development of sequencing methodologies designed to assess genome-wide polyadenylation events. The goal of these approaches is to enrich, partition, capture and ultimately sequence poly(A) site junctions. However, these methods often require poly(A) enrichment, 3΄ linker ligation steps, and RNA fragmentation, which can necessitate higher levels of starting RNA, increase experimental error and potentially introduce bias. We recently reported a click-chemistry based method for generating RNAseq libraries called 'ClickSeq'. Here, we adapt this method to direct the cDNA synthesis specifically toward the 3΄UTR/poly(A) tail junction of cellular RNA. With this novel approach, we demonstrate sensitive and specific enrichment for poly(A) site junctions without the need for complex sample preparation, fragmentation or purification. Poly(A)-ClickSeq (PAC-seq) is therefore a simple procedure that generates high-quality RNA-seq poly(A) libraries. As a proof-of-principle, we utilized PAC-seq to explore the poly(A) landscape of both human and Drosophila cells in culture and observed outstanding overlap with existing poly(A) databases and also identified previously unannotated poly(A) sites. Moreover, we utilize PAC-seq to quantify and analyze APA events regulated by CFIm25 illustrating how this technology can be harnessed to identify alternatively polyadenylated RNA.


Assuntos
Regiões 3' não Traduzidas , Química Click/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Poli A/análise , RNA Mensageiro/análise , Transcriptoma , Animais , Sequência de Bases , DNA Complementar/genética , DNA Complementar/metabolismo , Bases de Dados Genéticas , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Biblioteca Gênica , Células HeLa , Humanos , Anotação de Sequência Molecular , Poli A/genética , Poli A/metabolismo , Poliadenilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa