RESUMO
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease mainly characterized by motor incoordination because of progressive cerebellar degeneration. SCA7 is caused by polyglutamine expansion in ATXN7, a subunit of the transcriptional coactivator SAGA, which harbors histone modification activities. Polyglutamine expansions in specific proteins are also responsible for SCA1-SCA3, SCA6, and SCA17; however, the converging and diverging pathomechanisms remain poorly understood. Using a new SCA7 knock-in mouse, SCA7140Q/5Q, we analyzed gene expression in the cerebellum and assigned gene deregulation to specific cell types using published datasets. Gene deregulation affects all cerebellar cell types, although at variable degree, and correlates with alterations of SAGA-dependent epigenetic marks. Purkinje cells (PCs) are by far the most affected neurons and show reduced expression of 83 cell-type identity genes, including these critical for their spontaneous firing activity and synaptic functions. PC gene downregulation precedes morphologic alterations, pacemaker dysfunction, and motor incoordination. Strikingly, most PC genes downregulated in SCA7 have also decreased expression in SCA1 and SCA2 mice, revealing converging pathomechanisms and a common disease signature involving cGMP-PKG and phosphatidylinositol signaling pathways and LTD. Our study thus points out molecular targets for therapeutic development, which may prove beneficial for several SCAs. Furthermore, we show that SCA7140Q/5Q males and females exhibit the major disease features observed in patients, including cerebellar damage, cerebral atrophy, peripheral nerves pathology, and photoreceptor dystrophy, which account for progressive impairment of behavior, motor, and visual functions. SCA7140Q/5Q mice represent an accurate model for the investigation of different aspects of SCA7 pathogenesis.SIGNIFICANCE STATEMENT Spinocerebellar ataxia 7 (SCA7) is one of the several forms of inherited SCAs characterized by cerebellar degeneration because of polyglutamine expansion in specific proteins. The ATXN7 involved in SCA7 is a subunit of SAGA transcriptional coactivator complex. To understand the pathomechanisms of SCA7, we determined the cell type-specific gene deregulation in SCA7 mouse cerebellum. We found that the Purkinje cells are the most affected cerebellar cell type and show downregulation of a large subset of neuronal identity genes, critical for their spontaneous firing and synaptic functions. Strikingly, the same Purkinje cell genes are downregulated in mouse models of two other SCAs. Thus, our work reveals a disease signature shared among several SCAs and uncovers potential molecular targets for their treatment.
Assuntos
Cerebelo/patologia , Células de Purkinje/patologia , Ataxias Espinocerebelares/patologia , Animais , Regulação para Baixo , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , TranscriptomaRESUMO
BACKGROUND: Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder that primarily affects the cerebellum and retina. SCA7 is caused by a polyglutamine expansion in the ATXN7 protein, a subunit of the transcriptional coactivator SAGA that acetylates histone H3 to deposit narrow H3K9ac mark at DNA regulatory elements of active genes. Defective histone acetylation has been presented as a possible cause for gene deregulation in SCA7 mouse models. However, the topography of acetylation defects at the whole genome level and its relationship to changes in gene expression remain to be determined. METHODS: We performed deep RNA-sequencing and chromatin immunoprecipitation coupled to high-throughput sequencing to examine the genome-wide correlation between gene deregulation and alteration of the active transcription marks, e.g. SAGA-related H3K9ac, CBP-related H3K27ac and RNA polymerase II (RNAPII), in a SCA7 mouse retinopathy model. RESULTS: Our analyses revealed that active transcription marks are reduced at most gene promoters in SCA7 retina, while a limited number of genes show changes in expression. We found that SCA7 retinopathy is caused by preferential downregulation of hundreds of highly expressed genes that define morphological and physiological identities of mature photoreceptors. We further uncovered that these photoreceptor genes harbor unusually broad H3K9ac profiles spanning the entire gene bodies and have a low RNAPII pausing. This broad H3K9ac signature co-occurs with other features that delineate superenhancers, including broad H3K27ac, binding sites for photoreceptor specific transcription factors and expression of enhancer-related non-coding RNAs (eRNAs). In SCA7 retina, downregulated photoreceptor genes show decreased H3K9 and H3K27 acetylation and eRNA expression as well as increased RNAPII pausing, suggesting that superenhancer-related features are altered. CONCLUSIONS: Our study thus provides evidence that distinctive epigenetic configurations underlying high expression of cell-type specific genes are preferentially impaired in SCA7, resulting in a defect in the maintenance of identity features of mature photoreceptors. Our results also suggest that continuous SAGA-driven acetylation plays a role in preserving post-mitotic neuronal identity.
Assuntos
Doenças Retinianas , Ataxias Espinocerebelares , Camundongos , Animais , Ataxias Espinocerebelares/genética , Fatores de Transcrição/genética , Modelos Animais de Doenças , Doenças Retinianas/genética , Expressão Gênica , Epigênese GenéticaRESUMO
Cilia are highly conserved and ubiquitously expressed organelles. Ciliary defects of genetic origins lead to ciliopathies, in which retinal degeneration (RD) is one cardinal clinical feature. In order to efficiently find and design new therapeutic strategies the underlying mechanism of retinal degeneration of three murine model was compared. The rodent models correspond to three emblematic ciliopathies, namely: Bardet-Biedl Syndrome (BBS), Alström Syndrome (ALMS) and CEP290-mediated Leber Congenital Amaurosis (LCA). Scotopic rodent electroretinography (ERG) was used to test the retinal function of mice, Transmitted Electron microscopy (T.E.M) was performed to assess retinal structural defects and real-time PCR for targeted genes was used to monitor the expression levels of the major apoptotic Caspase-related pathways in retinal extracts to identify pathological pathways driving the RD in order to identify potential therapeutic targets. We found that BBS and CEP290-mediated LCA mouse models exhibit perinatal retinal degeneration associated with rhodopsin mislocalization in the photoreceptor and the induction of an Endoplasmic Reticulum (ER) stress. On the other hand, the tested ALMS mouse model, displayed a slower degeneration phenotype, with no Rhodopsin mislocalization nor ER-stress activity. Our data points out that behind the general phenotype of vision loss associated with these ciliopathies, the mechanisms and kinetics of disease progression are different.
Assuntos
Ciliopatias/complicações , Retina , Degeneração Retiniana , Animais , Síndrome de Bardet-Biedl/complicações , Modelos Animais de Doenças , Eletrorretinografia , Amaurose Congênita de Leber/complicações , Camundongos , Retina/metabolismo , Retina/patologia , Retina/fisiopatologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Rodopsina/metabolismoRESUMO
At the first retinal synapse, horizontal cells (HCs) contact both photoreceptor terminals and bipolar cell dendrites, modulating information transfer between these two cell types to enhance spatial contrast and mediate color opponency. The synaptic mechanisms through which these modulations occur are still debated. The initial hypothesis of a GABAergic feedback from HCs to cones has been challenged by pharmacological inconsistencies. Surround antagonism has been demonstrated to occur via a modulation of cone calcium channels through ephaptic signaling and pH changes in the synaptic cleft. GABAergic transmission between HCs and cones has been reported in some lower vertebrates, like the turtle and tiger salamander. In these reports, it was revealed that GABA is released from HCs through reverse transport and target GABA receptors are located at the cone terminals. In mammalian retinas, there is growing evidence that HCs can release GABA through conventional vesicular transmission, acting both on autaptic GABA receptors and on receptors expressed at the dendritic tips of the bipolar cells. The presence of GABA receptors on mammalian cone terminals remains equivocal. Here, we looked specifically for functional GABA receptors in mouse photoreceptors by recording in the whole-cell or amphotericin/gramicidin-perforated patch clamp configurations. Cones could be differentiated from rods through morphological criteria. Local GABA applications evoked a Cl- current in cones but not in rods. It was blocked by the GABAA receptor antagonist bicuculline methiodide and unaffected by the GABAC receptor antagonist TPMPA [(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid]. The voltage dependency of the current amplitude was as expected from a direct action of GABA on cone pedicles but not from an indirect modulation of cone currents following the activation of the GABA receptors of HCs. This supports a direct role of GABA released from HCs in the control of cone activity in the mouse retina.
Assuntos
Receptores de GABA-A/metabolismo , Receptores de GABA/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Horizontais da Retina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Antagonistas GABAérgicos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Receptores de GABA/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/metabolismoRESUMO
Inherited mutations that lead to misfolding of the visual pigment rhodopsin (Rho) are a prominent cause of photoreceptor neuron (PN) degeneration and blindness. How Rho proteotoxic stress progressively impairs PN viability remains unknown. To identify the pathways that mediate Rho toxicity in PNs, we performed a comprehensive proteomic profiling of retinas from Drosophila transgenics expressing Rh1(P37H), the equivalent of mammalian Rho(P23H), the most common Rho mutation linked to blindness in humans. Profiling of young Rh1(P37H) retinas revealed a coordinated upregulation of energy-producing pathways and attenuation of energy-consuming pathways involving target of rapamycin (TOR) signaling, which was reversed in older retinas at the onset of PN degeneration. We probed the relevance of these metabolic changes to PN survival by using a combination of pharmacological and genetic approaches. Chronic suppression of TOR signaling, using the inhibitor rapamycin, strongly mitigated PN degeneration, indicating that TOR signaling activation by chronic Rh1(P37H) proteotoxic stress is deleterious for PNs. Genetic inactivation of the endoplasmic reticulum stress-induced JNK/TRAF1 axis as well as the APAF-1/caspase-9 axis, activated by damaged mitochondria, dramatically suppressed Rh1(P37H)-induced PN degeneration, identifying the mitochondria as novel mediators of Rh1(P37H) toxicity. We thus propose that chronic Rh1(P37H) proteotoxic stress distorts the energetic profile of PNs leading to metabolic imbalance, mitochondrial failure, and PN degeneration and therapies normalizing metabolic function might be used to alleviate Rh1(P37H) toxicity in the retina. Our study offers a glimpse into the intricate higher order interactions that underlie PN dysfunction and provides a useful resource for identifying other molecular networks that mediate Rho toxicity in PNs.
Assuntos
Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Animais , Animais Geneticamente Modificados , Western Blotting , Caspase 9/metabolismo , Corantes , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Eletrorretinografia , Estresse do Retículo Endoplasmático/fisiologia , Degradação Associada com o Retículo Endoplasmático/fisiologia , Metabolismo Energético/efeitos dos fármacos , Espectrometria de Massas , Microscopia Eletrônica , Mitocôndrias/efeitos dos fármacos , Mutação/genética , Mutação/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Dobramento de Proteína , Hidrolisados de Proteína/química , Proteômica , Rodopsina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/fisiologia , Cloreto de TolônioRESUMO
Tight regulation of the visual response is essential for photoreceptor function and survival. Visual response dysregulation often leads to photoreceptor cell degeneration, but the causes of such cell death are not well understood. In this study, we investigated a fatty acid transport protein (fatp) null mutation that caused adult-onset and progressive photoreceptor cell death. Consistent with fatp having a role in the retina, we showed that fatp is expressed in adult photoreceptors and accessory cells and that its re-expression in photoreceptors rescued photoreceptor viability in fatp mutants. The visual response in young fatp-mutant flies was abnormal with elevated electroretinogram amplitudes associated with high levels of Rhodopsin-1 (Rh1). Reducing Rh1 levels in rh1 mutants or depriving flies of vitamin A rescued photoreceptor cell death in fatp mutant flies. Our results indicate that fatp promotes photoreceptor survival by regulating Rh1 abundance.
Assuntos
Drosophila melanogaster , Proteínas de Transporte de Ácido Graxo , Células Fotorreceptoras de Invertebrados , Degeneração Retiniana , Rodopsina , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Eletrorretinografia , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Expressão Gênica , Mutação , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estimulação Luminosa , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/fisiopatologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Vitamina D/farmacologiaRESUMO
The most common Rhodopsin (Rh) mutation associated with autosomal dominant retinitis pigmentosa (ADRP) in North America is the substitution of proline 23 by histidine (Rh(P23H)). Unlike the wild-type Rh, mutant Rh(P23H) exhibits folding defects and forms intracellular aggregates. The mechanisms responsible for the recognition and clearance of misfolded Rh(P23H) and their relevance to photoreceptor neuron (PN) degeneration are poorly understood. Folding-deficient membrane proteins are subjected to Endoplasmic Reticulum (ER) quality control, and we have recently shown that Rh(P23H) is a substrate of the ER-associated degradation (ERAD) effector VCP/ter94, a chaperone that extracts misfolded proteins from the ER (a process called retrotranslocation) and facilitates their proteasomal degradation. Here, we used Drosophila, in which Rh1(P37H) (the equivalent of mammalian Rh(P23H)) is expressed in PNs, and found that the endogenous Rh1 is required for Rh1(P37H) toxicity. Genetic inactivation of VCP increased the levels of misfolded Rh1(P37H) and further activated the Ire1/Xbp1 ER stress pathway in the Rh1(P37H) retina. Despite this, Rh1(P37H) flies with decreased VCP function displayed a potent suppression of retinal degeneration and blindness, indicating that VCP activity promotes neurodegeneration in the Rh1(P37H) retina. Pharmacological treatment of Rh1(P37H) flies with the VCP/ERAD inhibitor Eeyarestatin I or with the proteasome inhibitor MG132 also led to a strong suppression of retinal degeneration. Collectively, our findings raise the possibility that excessive retrotranslocation and/or degradation of visual pigment is a primary cause of PN degeneration.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila/metabolismo , Inativação Gênica , Retina/metabolismo , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Rodopsina/química , Rodopsina/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Drosophila/química , Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto , Dobramento de Proteína , Retina/química , Retina/patologia , Retinose Pigmentar/genética , Rodopsina/genética , Proteína com ValosinaRESUMO
Duchenne muscular dystrophy (DMD) is caused by X-linked inherited or de novo DMD gene mutations predominantly affecting males who develop early-onset muscle degeneration, severely affecting their quality of life and leading to reduced life expectancy. DMD patients may also develop proliferative retinopathy, cataract, ERG abnormalities, altered contrast sensitivity, color vision losses, and elevated flash detection thresholds during dark adaptation. Depending on the position of the genetic alteration in the large DMD gene, it is associated with a lack of the full-length dystrophin protein possibly with an additional loss of one or several other dystrophins, which are normally transcribed from internal promoters in retina and crystalline lens. During the last decades, the properties of the dystrophins have been characterized in patients with different genetic alterations and in genetic mouse models of DMD. The complex expression pattern of the dystrophins in photoreceptors, Müller glial cells and astrocytes, likely influences synaptic transmission, ionic balance and vascular integrity of the retina. However, the specific function of each retinal dystrophin remains largely unknown. This review describes the current knowledge on dystrophin expression, the putative molecular, structural, and physiological properties of retinal dystrophins, and the main clinical implications associated with the loss of dystrophins in DMD patients and mouse models. Current data and working hypotheses warrant future research on retinal dystrophins to increase our understanding of dystrophin function in the central nervous system in general and to unveil new retinal mechanisms and therapeutic avenues for retinal diseases.
Assuntos
Distrofia Muscular de Duchenne , Doenças Retinianas , Masculino , Camundongos , Animais , Distrofina/genética , Distrofina/química , Distrofina/metabolismo , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Qualidade de Vida , Retina/metabolismo , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismoRESUMO
Lateral interactions at the first retinal synapse have been initially proposed to involve GABA by transporter-mediated release from horizontal cells, onto GABA(A) receptors expressed on cone photoreceptor terminals and/or bipolar cell dendrites. However, in the mammalian retina, horizontal cells do not seem to contain GABA systematically or to express membrane GABA transporters. We here report that mouse retinal horizontal cells express GAD65 and/or GAD67 mRNA, and were weakly but consistently immunostained for GAD65/67. While GABA was readily detected after intracardiac perfusion, it was lost during classical preparation for histology or electrophysiology. It could not be restored by incubation in a GABA-containing medium, confirming the absence of membrane GABA transporters in these cells. However, GABA was synthesized de novo from glutamate or glutamine, upon addition of pyridoxal 5'-phosphate, a cofactor of GAD65/67. Mouse horizontal cells are thus atypical GABAergic neurons, with no functional GABA uptake, but a glutamate and/or glutamine transport system allowing GABA synthesis, probably depending physiologically from glutamate released by photoreceptors. Our results suggest that the role of GABA in lateral inhibition may have been underestimated, at least in mammals, and that tissue pre-incubation with glutamine and pyridoxal 5'-phosphate should yield a more precise estimate of outer retinal processing.
Assuntos
Retina/metabolismo , Células Horizontais da Retina/metabolismo , Ácido gama-Aminobutírico/fisiologia , Animais , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/fisiologia , Vias Neurais/citologia , Vias Neurais/metabolismo , Fosfato de Piridoxal/metabolismo , RNA Mensageiro/metabolismo , Retina/citologia , Retina/enzimologia , Células Horizontais da Retina/citologia , Transmissão Sináptica/fisiologia , Visão Ocular/fisiologia , Ácido gama-Aminobutírico/biossínteseRESUMO
Purpose: To study the potential effect of a gene therapy, designed to rescue the expression of dystrophin Dp71 in the retinas of Dp71-null mice, on retinal physiology. Methods: We recorded electroretinograms (ERGs) in Dp71-null and wild-type littermate mice. In dark-adapted eyes, responses to flashes of several strengths were measured. In addition, flash responses on a 25-candela/square meters background were measured. On- and Off-mediated responses to sawtooth stimuli and responses to photopic sine-wave modulation (3-30 Hz) were also recorded. After establishing the ERG phenotype, the ShH10-GFP adeno-associated virus (AAV), which has been previously shown to target specifically Müller glial cells (MGCs), was delivered intravitreously with or without (sham therapy) the Dp71 coding sequence under control of a CBA promoter. ERG recordings were repeated three months after treatment. Real-time quantitative PCR and Western blotting analyses were performed in order to quantify Dp71 expression in the retinas. Results: Dp71-null mice displayed reduced b-waves in dark- and light-adapted flash ERGs and smaller response amplitudes to photopic rapid-on sawtooth modulation and to sine-wave stimuli. Three months after intravitreal injections of the ShH10-GFP-2A-Dp71 AAV vector, ERG responses were completely recovered in treated eyes of Dp71-null mice. The functional rescue was associated with an overexpression of Dp71 in treated retinas. Conclusions: The present results show successful functional recovery accompanying the reexpression of Dp71. In addition, this experimental model sheds light on MGCs influencing ERG components, since previous reports showed that aquaporin 4 and Kir4.1 channels were mislocated in MGCs of Dp71-null mice, while their distribution could be normalized following intravitreal delivery of the same ShH10-GFP-2A-Dp71 vector.
Assuntos
Distrofina/metabolismo , Retina/fisiologia , Doenças Retinianas/fisiopatologia , Animais , Adaptação à Escuridão , Dependovirus/fisiologia , Distrofina/deficiência , Eletrorretinografia , Células Ependimogliais/metabolismo , Feminino , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Genótipo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retina/metabolismo , Doenças Retinianas/terapiaRESUMO
[This corrects the article DOI: 10.1038/s42003-018-0226-0.].
RESUMO
: Panton-Valentine leukocidin (PVL) retinal intoxication induces glial activation and inflammatory response via the interaction with retinal neurons. In this study, rabbit retinal explant was used as a model to study neuronal and glial consequences of PVL intoxication. Retinal explants were treated with different concentrations of PVL. PVL location and neuronal and glial changes were examined using immunohistochemistry. Some inflammatory factors were quantified using RT-qPCR at 4 and 8 h. These results were compared with those of control explants. PVL co-localized rapidly with retinal ganglion cells and with horizontal cells. PVL induced Müller and microglial cell activation. Retinal structure was altered and some amacrine and microglial cells underwent apoptosis. Glial activation and cell apoptosis increased in a PVL concentration- and time-dependent manner. IL-6 and IL-8 expression increased in PVL-treated explants but less than in control explants, which may indicate that other factors were responsible for glial activation and retinal apoptosis. On retinal explants, PVL co-localized with neuronal cells and induced glial activation together with microglial apoptosis, which confirms previous results observed in in vivo model. Rabbit retinal explant seems to be suitable model to further study the process of PVL leading to glial activation and retinal cells apoptosis.
Assuntos
Toxinas Bacterianas/toxicidade , Exotoxinas/toxicidade , Leucocidinas/toxicidade , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Células Cultivadas , Mediadores da Inflamação/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , CoelhosRESUMO
Establishing synaptic contacts between neurons is paramount for nervous system function. This process involves transsynaptic interactions between a host of cell adhesion molecules that act in cooperation with the proteins of the extracellular matrix to specify unique physiological properties of individual synaptic connections. However, understanding of the molecular mechanisms that generate functional diversity in an input-specific fashion is limited. In this study, we identify that major components of the extracellular matrix proteins present in the synaptic cleft-members of the heparan sulfate proteoglycan (HSPG) family-associate with the GPR158/179 group of orphan receptors. Using the mammalian retina as a model system, we demonstrate that the HSPG member Pikachurin, released by photoreceptors, recruits a key post-synaptic signaling complex of downstream ON-bipolar neurons in coordination with the pre-synaptic dystroglycan glycoprotein complex. We further demonstrate that this transsynaptic assembly plays an essential role in synaptic transmission of photoreceptor signals.
Assuntos
Proteínas de Transporte/metabolismo , Distroglicanas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Fotorreceptoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Ligação Proteica , Sinapses/metabolismo , Transmissão Sináptica/fisiologiaRESUMO
Purpose: The purpose of this study was to quantify the frequency and severity of ocular abnormalities affecting wild-type C57BL/6N mice, the most common strain used worldwide for the creation of single-gene knockouts. Methods: A total of 2773 animals (5546 eyes) were examined at one colony at UC Davis and in three more colonies at the Institut Clinique de la Souris in Strasbourg, France. Mice were examined at 15 to 16 weeks postnatal age by performing anterior segment biomicroscopy, posterior segment examination by indirect ophthalmoscopy, intraocular pressure measurement, and optical coherence tomography of anterior and posterior segment structures. Results: Common ocular findings in the C57BL/6N strain included corneal deposits (3%), increased optical density of the anterior lens capsule (67%), punctate nuclear cataracts (98%), vitreous crystalline deposits (61%), hyaloid vascular remnant (6%), and retinal dysplasia attributed to the rd8 mutation (58%). Interestingly, retinal dysplasia was more common in male mice in all four breeding colonies evaluated in this study. The thickness of ocular tissues and compartments were measured by spectral-domain optical coherence tomography, including the central cornea, anterior chamber, vitreous, and retinal layers. Intraocular pressure was measured by rebound tonometry. Conclusions: Ocular abnormalities are common in anterior and posterior segments of the C57BL/6N mouse, the most common background on which single-gene knockout mice have been made. It is important that vision scientists understand the extent and variability of ocular findings associated with this particular genetic background of mice.
Assuntos
DNA/genética , Anormalidades do Olho/genética , Mutação , Proteínas Nucleares/genética , Animais , Segmento Anterior do Olho/patologia , Análise Mutacional de DNA , Modelos Animais de Doenças , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/metabolismo , Pressão Intraocular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Oftalmoscopia , Segmento Posterior do Olho/patologia , Proteínas de Ligação a RNA , Tomografia de Coerência ÓpticaRESUMO
Despite advances in next generation sequencing technologies, determining the genetic basis of ocular disease remains a major challenge due to the limited access and prohibitive cost of human forward genetics. Thus, less than 4,000 genes currently have available phenotype information for any organ system. Here we report the ophthalmic findings from the International Mouse Phenotyping Consortium, a large-scale functional genetic screen with the goal of generating and phenotyping a null mutant for every mouse gene. Of 4364 genes evaluated, 347 were identified to influence ocular phenotypes, 75% of which are entirely novel in ocular pathology. This discovery greatly increases the current number of genes known to contribute to ophthalmic disease, and it is likely that many of the genes will subsequently prove to be important in human ocular development and disease.
RESUMO
PURPOSE: To analyze high-resolution color photographs of the mouse fundus. METHODS: A contact fundus camera based on topical endoscopy fundus imaging (TEFI) was built. Fundus photographs of C57 and Balb/c mice obtained by TEFI were qualitatively analyzed. RESULTS: High-resolution digital imaging of the fundus, including the ciliary body, was routinely obtained. The reflectance and contrast of retinal vessels varied significantly with the amount of incident and reflected light and, thus, with the degree of fundus pigmentation. The combination of chromatic and spherical aberration favored blue light imaging, in term of both field and contrast. CONCLUSIONS: TEFI is a small, low-cost system that allows high-resolution color fundus imaging and fluorescein angiography in conscious mice. Panretinal imaging is facilitated by the presence of the large rounded lens. TEFI significantly improves the quality of in vivo photography of retina and ciliary process of mice. Resolution is, however, affected by chromatic aberration, and should be improved by monochromatic imaging.
Assuntos
Fundo de Olho , Fotografação/métodos , Retina/anatomia & histologia , Vasos Retinianos/anatomia & histologia , Animais , Angiofluoresceinografia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fotografação/instrumentaçãoRESUMO
Voltage-gated sodium channels (VGSCs) ensure the saltatory propagation of action potentials along axons by acting as signal amplifiers at the nodes of Ranvier. In the retina, activity mediated by VGSCs is important for the refinement of the retinotectal map. Here, we conducted a full-field electroretinogram (ERG) study on mice null for the sodium channel NaV1.6. Interestingly, the light-activated hyperpolarization of photoreceptor cells (the a-wave) and the major "downstream" components of the ERG, the b-wave and the oscillatory potentials, are markedly reduced and delayed in these mice. The functional deficit was not associated with any morphological abnormality. We demonstrate that Scn8a is expressed in the ganglion and inner nuclear layers and at low levels in the outer nuclear layer beginning shortly before the observed ERG deficit. Together, our data reveal a previously unappreciated role for VGSCs in the physiological maturation of photoreceptors.
Assuntos
Proteínas do Tecido Nervoso/fisiologia , Células Fotorreceptoras/fisiologia , Canais de Sódio/fisiologia , Animais , Animais Recém-Nascidos , Relação Dose-Resposta à Radiação , Eletrorretinografia/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão/métodos , Canal de Sódio Disparado por Voltagem NAV1.6 , Proteínas do Tecido Nervoso/deficiência , Estimulação Luminosa/métodos , Células Fotorreceptoras/crescimento & desenvolvimento , Células Fotorreceptoras/efeitos da radiação , Células Fotorreceptoras/ultraestrutura , Canais de Sódio/deficiênciaRESUMO
We evaluated fundus imaging using a modified confocal scanning laser ophthalmoscope (cSLO) in mice. Examinations were performed in conscious, untrained mice. The largest field of view measured 1,520 x 1,520 mu, with a significant interindividual variability, itself correlated to biometric variability. The composite field of view extended up to the ora serrata. The reflectance imaging associated light reflection from nerve fiber bundles and vessel walls, and absorption by hemoglobin and melanin. Light absorption by the pigment epithelium indeed increased the contrast of the nerve fiber layer, but impaired viewing of the choroid. Due to the confocal mode, fluorescence angiograms with clear separation of retinal and choroidal fluorescence could be obtained even in albino mice. Micrometric-scale transverse resolution and several planes of optical sectioning within the retina were obtained. This permitted for instance tridimensional, subcellular viewing of gfp-expressing retinal microglial cells in CX(3)CR1 mice. We concluded that cSLO is a promising tool for noninvasive, multimodal intravital microscopy of the fundus in the mouse.
Assuntos
Fundo de Olho , Microscopia Confocal , Oftalmoscopia/métodos , Animais , Meios de Contraste , Angiofluoresceinografia , Proteínas de Fluorescência Verde , Verde de Indocianina , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Doenças Retinianas/diagnósticoRESUMO
PURPOSE: The dystrophin mouse mutant mdx3Cv exhibits scotopic electroretinograpic (ERG) abnormalities, which resemble clinical changes observed in Duchenne muscular dystrophy (DMD) patients. In the present study, ERGs obtained from mdx3Cv and their wild-type littermates under scotopic, mesopic, and photopic conditions were analyzed to provide further insight on the affected retinal pathways, and to compare them with human data. METHODS: Electroretinograms of mdx3Cv (n = 9) and age-matched C57BL/6J mice (n = 10) included the scotopic full-field flash (for outer retinal deficits in rod pathway), scotopic threshold response (for inner retinal integrity), photopic flash, sinusoidal flicker (for outer retinal deficits in cone pathway), mesopic rapid-on/-off sawtooth flicker, and photopic long-duration flash measurements (for separate ON-/OFF-responses under different conditions). RESULTS: The mdx3Cv mice exhibited diminished and delayed scotopic and photopic ERGs, particularly in their b-wave and oscillatory potentials. Interestingly, homologues to the a- and b-wave of the mesopic ON-response were affected in their peak/trough times but not in their amplitude, whereas changes to both features were uncovered for photopic ON-response and sinusoidal flicker. Mesopic and photopic OFF-components were within the norm. CONCLUSIONS: Abnormal scotopic and photopic flash ERGs were observed in mdx3Cv, which corroborate with deficits that are likely restricted to the level of photoreceptor-to-bipolar cell transmission. Further overlaps between mdx3Cv mice and DMD patients exist, including asymmetrical ON versus OFF ERG alterations under mesopic versus photopic vision. In mice, ON-pathway function is compromised, whereas the OFF-pathway is spared.
Assuntos
Visão de Cores/fisiologia , Eletrorretinografia/métodos , Distrofia Muscular de Duchenne/fisiopatologia , Retina/fisiopatologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/diagnóstico , Estimulação LuminosaRESUMO
BACKGROUND: Bardet-Biedl Syndrome (BBS) is a genetically heterogeneous ciliopathy with clinical cardinal features including retinal degeneration, obesity and renal dysfunction. To date, 20 BBS genes have been identified with BBS10 being a major BBS gene found to be mutated in almost 20 percent of all BBS patients worldwide. It codes for the BBS10 protein which forms part of a chaperone complex localized at the basal body of the primary cilium. Renal dysfunction in BBS patients is one of the major causes of morbidity in human patients and is associated initially with urinary concentration defects related to water reabsorption impairment in renal epithelial cells. The aim of this study was to study and compare the impact of a total Bbs10 inactivation (Bbs10 (-/-)) with that of a specific renal epithelial cells inactivation (Bbs10 (fl/fl) ; Cdh16-Cre (+/-)). RESULTS: We generated the Bbs10 (-/-) and Bbs10 (fl/fl) ; Cadh16-Cre (+/-) mouse model and characterized them. Bbs10 (-/-) mice developed obesity, retinal degeneration, structural defects in the glomeruli, polyuria associated with high circulating arginine vasopressin (AVP) concentrations, and vacuolated, yet ciliated, renal epithelial cells. On the other hand, the Bbs10 (fl/fl) ; Cadh16-Cre (+/-)mice displayed no detectable impairment. CONCLUSIONS: These data highlight the importance of a systemic Bbs10 inactivation to trigger averted renal dysfunction whereas a targeted absence of BBS10 in the renal epithelium is seemingly non-deleterious.