Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nucleic Acids Res ; 48(D1): D579-D589, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31647104

RESUMO

Large-scale genome sequencing and the increasingly massive use of high-throughput approaches produce a vast amount of new information that completely transforms our understanding of thousands of microbial species. However, despite the development of powerful bioinformatics approaches, full interpretation of the content of these genomes remains a difficult task. Launched in 2005, the MicroScope platform (https://www.genoscope.cns.fr/agc/microscope) has been under continuous development and provides analysis for prokaryotic genome projects together with metabolic network reconstruction and post-genomic experiments allowing users to improve the understanding of gene functions. Here we present new improvements of the MicroScope user interface for genome selection, navigation and expert gene annotation. Automatic functional annotation procedures of the platform have also been updated and we added several new tools for the functional annotation of genes and genomic regions. We finally focus on new tools and pipeline developed to perform comparative analyses on hundreds of genomes based on pangenome graphs. To date, MicroScope contains data for >11 800 microbial genomes, part of which are manually curated and maintained by microbiologists (>4500 personal accounts in September 2019). The platform enables collaborative work in a rich comparative genomic context and improves community-based curation efforts.


Assuntos
Genes Arqueais , Genes Bacterianos , Genômica/métodos , Anotação de Sequência Molecular/métodos , Software , Bases de Dados Genéticas , Redes e Vias Metabólicas
2.
Brief Bioinform ; 20(4): 1071-1084, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28968784

RESUMO

The overwhelming list of new bacterial genomes becoming available on a daily basis makes accurate genome annotation an essential step that ultimately determines the relevance of thousands of genomes stored in public databanks. The MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Starting from the results of our syntactic, functional and relational annotation pipelines, MicroScope provides an integrated environment for the expert annotation and comparative analysis of prokaryotic genomes. It combines tools and graphical interfaces to analyze genomes and to perform the manual curation of gene function in a comparative genomics and metabolic context. In this article, we describe the free-of-charge MicroScope services for the annotation and analysis of microbial (meta)genomes, transcriptomic and re-sequencing data. Then, the functionalities of the platform are presented in a way providing practical guidance and help to the nonspecialists in bioinformatics. Newly integrated analysis tools (i.e. prediction of virulence and resistance genes in bacterial genomes) and original method recently developed (the pan-genome graph representation) are also described. Integrated environments such as MicroScope clearly contribute, through the user community, to help maintaining accurate resources.


Assuntos
Genoma Microbiano , Genômica/métodos , Anotação de Sequência Molecular/métodos , Software , Biologia Computacional , Gráficos por Computador , Sistemas de Gerenciamento de Base de Dados , Bases de Dados de Compostos Químicos , Genômica/estatística & dados numéricos , Internet , Redes e Vias Metabólicas/genética , Fenômenos Microbiológicos , Anotação de Sequência Molecular/estatística & dados numéricos , Interface Usuário-Computador
3.
Nucleic Acids Res ; 45(D1): D517-D528, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899624

RESUMO

The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations.


Assuntos
Bases de Dados Genéticas , Metagenoma , Metagenômica/métodos , Microbiota/genética , Biologia Computacional/métodos , Evolução Molecular , Metaboloma , Metabolômica/métodos , Família Multigênica , Polimorfismo de Nucleotídeo Único , Software
4.
BMC Genomics ; 19(1): 373, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29783948

RESUMO

BACKGROUND: The SOS response is an almost ubiquitous response of cells to genotoxic stresses. The full complement of genes in the SOS regulon for Vibrio species has only been addressed through bioinformatic analyses predicting LexA binding box consensus and in vitro validation. Here, we perform whole transcriptome sequencing from Vibrio cholerae treated with mitomycin C as an SOS inducer to characterize the SOS regulon and other pathways affected by this treatment. RESULTS: Comprehensive transcriptional profiling allowed us to define the full landscape of promoters and transcripts active in V. cholerae. We performed extensive transcription start site (TSS) mapping as well as detection/quantification of the coding and non-coding RNA (ncRNA) repertoire in strain N16961. To improve TSS detection, we developed a new technique to treat RNA extracted from cells grown in various conditions. This allowed for identification of 3078 TSSs with an average 5'UTR of 116 nucleotides, and peak distribution between 16 and 64 nucleotides; as well as 629 ncRNAs. Mitomycin C treatment induced transcription of 737 genes and 28 ncRNAs at least 2 fold, while it repressed 231 genes and 17 ncRNAs. Data analysis revealed that in addition to the core genes known to integrate the SOS regulon, several metabolic pathways were induced. This study allowed for expansion of the Vibrio SOS regulon, as twelve genes (ubiEJB, tatABC, smpA, cep, VC0091, VC1190, VC1369-1370) were found to be co-induced with their adjacent canonical SOS regulon gene(s), through transcriptional read-through. Characterization of UV and mitomycin C susceptibility for mutants of these newly identified SOS regulon genes and other highly induced genes and ncRNAs confirmed their role in DNA damage rescue and protection. CONCLUSIONS: We show that genotoxic stress induces a pervasive transcriptional response, affecting almost 20% of the V. cholerae genes. We also demonstrate that the SOS regulon is larger than previously known, and its syntenic organization is conserved among Vibrio species. Furthermore, this specific co-localization is found in other γ-proteobacteria for genes recN-smpA and rmuC-tatABC, suggesting SOS regulon conservation in this phylum. Finally, we comment on the limitations of widespread NGS approaches for identification of all RNA species in bacteria.


Assuntos
Perfilação da Expressão Gênica , Regulon/genética , Resposta SOS em Genética/genética , Vibrio cholerae/genética , Regiões 5' não Traduzidas/genética , Mitomicina/farmacologia , Fenótipo , Resposta SOS em Genética/efeitos dos fármacos , Sítio de Iniciação de Transcrição/efeitos dos fármacos , Vibrio cholerae/efeitos dos fármacos
5.
Environ Microbiol ; 19(3): 1103-1119, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27902881

RESUMO

Magnetotactic bacteria (MTB) are a group of phylogenetically and physiologically diverse Gram-negative bacteria that synthesize intracellular magnetic crystals named magnetosomes. MTB are affiliated with three classes of Proteobacteria phylum, Nitrospirae phylum, Omnitrophica phylum and probably with the candidate phylum Latescibacteria. The evolutionary origin and physiological diversity of MTB compared with other bacterial taxonomic groups remain to be illustrated. Here, we analysed the genome of the marine magneto-ovoid strain MO-1 and found that it is closely related to Magnetococcus marinus MC-1. Detailed analyses of the ribosomal proteins and whole proteomes of 390 genomes reveal that, among the Proteobacteria analysed, only MO-1 and MC-1 have coding sequences (CDSs) with a similarly high proportion of origins from Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria and Gammaproteobacteria. Interestingly, a comparative metabolic network analysis with anoxic network enzymes from sequenced MTB and non-MTB successfully allows the eventual prediction of an organism with a metabolic profile compatible for magnetosome production. Altogether, our genomic analysis reveals multiple origins of MO-1 and M. marinus MC-1 genomes and suggests a metabolism-restriction model for explaining whether a bacterium could become an MTB upon acquisition of magnetosome encoding genes.


Assuntos
Genoma Bacteriano , Magnetossomos , Proteobactérias/classificação , Proteobactérias/genética , Sequência de Bases , Deltaproteobacteria/genética , Evolução Molecular , Magnetossomos/genética , Filogenia , Proteobactérias/ultraestrutura
6.
Environ Microbiol ; 18(10): 3403-3424, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26913973

RESUMO

By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al., ) this bacterium was considered a potential agent for environmental bioremediation of industrial waste and a good colonizer of the rhizosphere. However, neither the annotation tools available at that time nor the scarcely available omics data-let alone metabolic modeling and other nowadays common systems biology approaches-allowed them to anticipate the astonishing capacities that are encoded in the genetic complement of this unique microorganism. In this work we have adopted a suite of state-of-the-art genomic analysis tools to revisit the functional and metabolic information encoded in the chromosomal sequence of strain KT2440. We identified 242 new protein-coding genes and re-annotated the functions of 1548 genes, which are linked to almost 4900 PubMed references. Catabolic pathways for 92 compounds (carbon, nitrogen and phosphorus sources) that could not be accommodated by the previously constructed metabolic models were also predicted. The resulting examination not only accounts for some of the known stress tolerance traits known in P. putida but also recognizes the capacity of this bacterium to perform difficult redox reactions, thereby multiplying its value as a platform microorganism for industrial biotechnology.


Assuntos
Genoma Bacteriano , Pseudomonas putida/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Genômica , Nitrogênio/metabolismo , Pseudomonas putida/metabolismo
7.
Nucleic Acids Res ; 41(Database issue): D636-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193269

RESUMO

MicroScope is an integrated platform dedicated to both the methodical updating of microbial genome annotation and to comparative analysis. The resource provides data from completed and ongoing genome projects (automatic and expert annotations), together with data sources from post-genomic experiments (i.e. transcriptomics, mutant collections) allowing users to perfect and improve the understanding of gene functions. MicroScope (http://www.genoscope.cns.fr/agc/microscope) combines tools and graphical interfaces to analyse genomes and to perform the manual curation of gene annotations in a comparative context. Since its first publication in January 2006, the system (previously named MaGe for Magnifying Genomes) has been continuously extended both in terms of data content and analysis tools. The last update of MicroScope was published in 2009 in the Database journal. Today, the resource contains data for >1600 microbial genomes, of which ∼300 are manually curated and maintained by biologists (1200 personal accounts today). Expert annotations are continuously gathered in the MicroScope database (∼50 000 a year), contributing to the improvement of the quality of microbial genomes annotations. Improved data browsing and searching tools have been added, original tools useful in the context of expert annotation have been developed and integrated and the website has been significantly redesigned to be more user-friendly. Furthermore, in the context of the European project Microme (Framework Program 7 Collaborative Project), MicroScope is becoming a resource providing for the curation and analysis of both genomic and metabolic data. An increasing number of projects are related to the study of environmental bacterial (meta)genomes that are able to metabolize a large variety of chemical compounds that may be of high industrial interest.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Bases de Dados Genéticas , Genoma Bacteriano , Enzimas/genética , Evolução Molecular , Perfilação da Expressão Gênica , Genoma Arqueal , Genômica , Internet , Redes e Vias Metabólicas/genética , Software , Sintenia , Integração de Sistemas
8.
Environ Microbiol ; 16(2): 525-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23841906

RESUMO

Magnetotactic bacteria (MTB) are capable of synthesizing intracellular organelles, the magnetosomes, that are membrane-bounded magnetite or greigite crystals arranged in chains. Although MTB are widely spread in various ecosystems, few axenic cultures are available, and only freshwater Magnetospirillum spp. have been genetically analysed. Here, we present the complete genome sequence of a marine magnetotactic spirillum, Magnetospira sp. QH-2. The high number of repeats and transposable elements account for the differences in QH-2 genome structure compared with other relatives. Gene cluster synteny and gene correlation analyses indicate that the insertion of the magnetosome island in the QH-2 genome occurred after divergence between freshwater and marine magnetospirilla. The presence of a sodium-quinone reductase, sodium transporters and other functional genes are evidence of the adaptive evolution of Magnetospira sp. QH-2 to the marine ecosystem. Genes well conserved among freshwater magnetospirilla for nitrogen fixation and assimilatory nitrate respiration are absent from the QH-2 genome. Unlike freshwater Magnetospirillum spp., marine Magnetospira sp. QH-2 neither has TonB and TonB-dependent receptors nor does it grow on trace amounts of iron. Taken together, our results show a distinct, adaptive evolution of Magnetospira sp. QH-2 to marine sediments in comparison with its closely related freshwater counterparts.


Assuntos
Evolução Biológica , Ecossistema , Genoma Bacteriano , Magnetospirillum/genética , Adaptação Biológica/genética , Proteínas de Bactérias/genética , Hibridização Genômica Comparativa , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Ilhas Genômicas , Magnetossomos/genética , Magnetospirillum/fisiologia , Família Multigênica , Filogenia , Quinona Redutases/genética , Água do Mar/microbiologia , Simportadores/genética , Sintenia
9.
PLoS Genet ; 7(12): e1002430, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22216014

RESUMO

Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that "hydrobacteria" and "terrabacteria" might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land.


Assuntos
Organismos Aquáticos/genética , Azospirillum/genética , Evolução Biológica , Ecossistema , Transferência Genética Horizontal/genética , Genoma Bacteriano/genética , Rhodospirillaceae/genética , Sequência de Bases , Genes Essenciais/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética
10.
PLoS Genet ; 6(2): e1000859, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20195515

RESUMO

Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live.


Assuntos
Betaproteobacteria/genética , Evolução Molecular , Genoma Bacteriano/genética , Adaptação Fisiológica/genética , Arsênio/metabolismo , Carbono/metabolismo , Hibridização Genômica Comparativa , Metabolismo Energético/genética , Meio Ambiente , Transferência Genética Horizontal/genética , Genes Bacterianos/genética , Genes Duplicados/genética , Variação Genética , Ilhas Genômicas/genética , Redes e Vias Metabólicas/genética , Plasmídeos/genética , Prófagos/genética
11.
J Bacteriol ; 194(7): 1840, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22408242

RESUMO

Although bacteria of the genus Wolbachia induced significant extended phenotypes to infected hosts, most molecular mechanisms involved are still unknown. To gain insight into the bacterial genetic determinants, we sequenced the whole genome of Wolbachia wAlbB strain, a commensal obligate intracellular of the tiger mosquito Aedes albopictus.


Assuntos
Aedes/microbiologia , Genoma Bacteriano , Insetos Vetores/microbiologia , Wolbachia/genética , Aedes/fisiologia , Animais , Sequência de Bases , Insetos Vetores/fisiologia , Dados de Sequência Molecular , Filogenia , Simbiose , Wolbachia/classificação , Wolbachia/isolamento & purificação , Wolbachia/fisiologia
12.
J Bacteriol ; 194(2): 551-2, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22207753

RESUMO

Methylomicrobium strains are widespread in saline environments. Here, we report the complete genome sequence of Methylomicrobium alcaliphilum 20Z, a haloalkaliphilic methanotrophic bacterium, which will provide the basis for detailed characterization of the core pathways of both single-carbon metabolism and responses to osmotic and high-pH stresses. Final assembly of the genome sequence revealed that this bacterium contains a 128-kb plasmid, making M. alcaliphilum 20Z the first methanotrophic bacterium of known genome sequence for which a plasmid has been reported.


Assuntos
Gammaproteobacteria/genética , Genoma Bacteriano , Dados de Sequência Molecular , Plasmídeos/genética
13.
Arch Microbiol ; 194(9): 725-36, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22481309

RESUMO

The plant growth-promoting proteobacterium Azospirillum brasilense enhances growth of many economically important crops, such as wheat, maize, and rice. The sequencing and annotation of the 1.59-Mbp replicon of A. brasilense CBG497, a strain isolated from a maize rhizosphere grown on an alkaline soil in the northeast of Mexico, revealed a GC content of 68.7 % and the presence of 1,430 potential protein-encoding genes, 1,147 of them classified into clusters of orthologous groups categories, and 16 tRNA genes representing 11 tRNA species. The presence of sixty-two genes representatives of the minimal gene set and chromid core genes suggests its importance in bacterial survival. The phaAB â†’ G operon, reported as involved in the bacterial adaptation to alkaline pH in the presence of K(+), was also found on this replicon and detected in several Azospirillum strains. Phylogenetic analysis suggests that it was laterally acquired. We were not able to show its inference on the adaptation to basic pH, giving a hint about the presence of an alternative system for adaptation to alkaline pH.


Assuntos
Azospirillum brasilense/genética , Plasmídeos/genética , Sequência de Aminoácidos , Azospirillum/genética , Azospirillum brasilense/classificação , Azospirillum brasilense/crescimento & desenvolvimento , Sequência de Bases , Transferência Genética Horizontal , Concentração de Íons de Hidrogênio , México , Dados de Sequência Molecular , Filogenia , Análise de Sequência
14.
PLoS Genet ; 5(1): e1000344, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19165319

RESUMO

The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the approximately 18,000 families of orthologous genes, we found approximately 2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome.


Assuntos
Escherichia coli/genética , Genoma Bacteriano , Elementos de DNA Transponíveis , Evolução Molecular , Genética , Genoma , Genômica , Funções Verossimilhança , Modelos Biológicos , Modelos Genéticos , Filogenia , Polimorfismo Genético , Recombinação Genética
15.
Microorganisms ; 10(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422372

RESUMO

Metformin is one of the most prescribed antidiabetic agents worldwide and is also considered for other therapeutic applications including cancer and endocrine disorders. It is largely unmetabolized by human enzymes and its presence in the environment has raised concern, with reported toxic effects on aquatic life and potentially also on humans. We report on the isolation and characterisation of strain MD1, an aerobic methylotrophic bacterium growing with metformin as its sole carbon, nitrogen and energy source. Strain MD1 degrades metformin into dimethylamine used for growth, and guanylurea as a side-product. Sequence analysis of its fully assembled genome showed its affiliation to Aminobacter niigataensis. Differential proteomics and transcriptomics, as well as mini-transposon mutagenesis of the strain, point to genes and proteins essential for growth with metformin and potentially associated with hydrolytic C-N cleavage of metformin or with cellular transport of metformin and guanylurea. The obtained results suggest the recent evolution of the growth-supporting capacity of strain MD1 to degrade metformin. Our results identify candidate proteins of the enzymatic system for metformin transformation in strain MD1 and will inform future research on the fate of metformin and its degradation products in the environment and in humans.

16.
Microbiol Resour Announc ; 11(7): e0013222, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35758722

RESUMO

We report the complete genome sequence of Tepidibacter sp. strain 8C15b, isolated from bank sediments of Haiphong Bay, Vietnam. The genome includes a 3,628,320-bp circular chromosome and a plasmid of 38,213 bp.

17.
BMC Genomics ; 12: 536, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22044686

RESUMO

BACKGROUND: Legionella pneumophila is an intracellular pathogen of environmental protozoa. When humans inhale contaminated aerosols this bacterium may cause a severe pneumonia called Legionnaires' disease. Despite the abundance of dozens of Legionella species in aquatic reservoirs, the vast majority of human disease is caused by a single serogroup (Sg) of a single species, namely L. pneumophila Sg1. To get further insights into genome dynamics and evolution of Sg1 strains, we sequenced strains Lorraine and HL 0604 1035 (Sg1) and compared them to the available sequences of Sg1 strains Paris, Lens, Corby and Philadelphia, resulting in a comprehensive multigenome analysis. RESULTS: We show that L. pneumophila Sg1 has a highly conserved and syntenic core genome that comprises the many eukaryotic like proteins and a conserved repertoire of over 200 Dot/Icm type IV secreted substrates. However, recombination events and horizontal gene transfer are frequent. In particular the analyses of the distribution of nucleotide polymorphisms suggests that large chromosomal fragments of over 200 kbs are exchanged between L. pneumophila strains and contribute to the genome dynamics in the natural population. The many secretion systems present might be implicated in exchange of these fragments by conjugal transfer. Plasmids also play a role in genome diversification and are exchanged among strains and circulate between different Legionella species. CONCLUSION: Horizontal gene transfer among bacteria and from eukaryotes to L. pneumophila as well as recombination between strains allows different clones to evolve into predominant disease clones and others to replace them subsequently within relatively short periods of time.


Assuntos
Transferência Genética Horizontal , Genoma Bacteriano , Legionella pneumophila/genética , Recombinação Genética , Evolução Biológica , Legionella pneumophila/classificação , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA
18.
Antimicrob Agents Chemother ; 55(3): 1270-3, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21173179

RESUMO

The sequence of pTN48, a plasmid of the FII-FIB replicon type that encodes a CTX-M-14 enzyme in an Escherichia coli strain of the phylogenetic group D2 O102-ST405 clone, was determined. pTN48 is, for the most part, a mosaic of virulence, antibiotic resistance, and addiction system modules found in various other plasmids. The presence of multiple addiction systems indicates that the plasmid should be stably maintained in the E. coli clone, favoring dissemination of the CTX-M-14 enzyme.


Assuntos
Escherichia coli/enzimologia , Escherichia coli/genética , Plasmídeos/genética , beta-Lactamases/genética , Sequência de Bases , Dados de Sequência Molecular , Filogenia
19.
BMC Genomics ; 11: 568, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20950463

RESUMO

BACKGROUND: Flexible genomes facilitate bacterial evolution and are classically organized into polymorphic strain-specific segments called regions of genomic plasticity (RGPs). Using a new web tool, RGPFinder, we investigated plasticity units in bacterial genomes, by exhaustive description of the RGPs in two Photorhabdus and two Xenorhabdus strains, belonging to the Enterobacteriaceae and interacting with invertebrates (insects and nematodes). RESULTS: RGPs account for about 60% of the genome in each of the four genomes studied. We classified RGPs into genomic islands (GIs), prophages and two new classes of RGP without the features of classical mobile genetic elements (MGEs) but harboring genes encoding enzymes catalyzing DNA recombination (RGPmob), or with no remarkable feature (RGPnone). These new classes accounted for most of the RGPs and are probably hypervariable regions, ancient MGEs with degraded mobilization machinery or non canonical MGEs for which the mobility mechanism has yet to be described. We provide evidence that not only the GIs and the prophages, but also RGPmob and RGPnone, have a mosaic structure consisting of modules. A module is a block of genes, 0.5 to 60 kb in length, displaying a conserved genomic organization among the different Enterobacteriaceae. Modules are functional units involved in host/environment interactions (22-31%), metabolism (22-27%), intracellular or intercellular DNA mobility (13-30%), drug resistance (4-5%) and antibiotic synthesis (3-6%). Finally, in silico comparisons and PCR multiplex analysis indicated that these modules served as plasticity units within the bacterial genome during genome speciation and as deletion units in clonal variants of Photorhabdus. CONCLUSIONS: This led us to consider the modules, rather than the entire RGP, as the true unit of plasticity in bacterial genomes, during both short-term and long-term genome evolution.


Assuntos
Genoma Bacteriano/genética , Genômica/métodos , Interações Hospedeiro-Patógeno/genética , Invertebrados/microbiologia , Photorhabdus/genética , Xenorhabdus/genética , Animais , Mapeamento Cromossômico , Cromossomos Bacterianos/genética , Evolução Molecular , Feminino , Rearranjo Gênico/genética , Genes Bacterianos/genética , Loci Gênicos/genética , Variação Genética , Humanos , Filogenia , RNA Ribossômico 16S/genética , Deleção de Sequência/genética , Sintenia/genética , Fatores de Tempo
20.
BMC Genomics ; 11: 368, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20537153

RESUMO

BACKGROUND: Helicobacter pylori infection is associated with several gastro-duodenal inflammatory diseases of various levels of severity. To determine whether certain combinations of genetic markers can be used to predict the clinical source of the infection, we analyzed well documented and geographically homogenous clinical isolates using a comparative genomics approach. RESULTS: A set of 254 H. pylori genes was used to perform array-based comparative genomic hybridization among 120 French H. pylori strains associated with chronic gastritis (n = 33), duodenal ulcers (n = 27), intestinal metaplasia (n = 17) or gastric extra-nodal marginal zone B-cell MALT lymphoma (n = 43). Hierarchical cluster analyses of the DNA hybridization values allowed us to identify a homogeneous subpopulation of strains that clustered exclusively with cagPAI minus MALT lymphoma isolates. The genome sequence of B38, a representative of this MALT lymphoma strain-cluster, was completed, fully annotated, and compared with the six previously released H. pylori genomes (i.e. J99, 26695, HPAG1, P12, G27 and Shi470). B38 has the smallest H. pylori genome described thus far (1,576,758 base pairs containing 1,528 CDSs); it contains the vacAs2m2 allele and lacks the genes encoding the major virulence factors (absence of cagPAI, babB, babC, sabB, and homB). Comparative genomics led to the identification of very few sequences that are unique to the B38 strain (9 intact CDSs and 7 pseudogenes). Pair-wise genomic synteny comparisons between B38 and the 6 H. pylori sequenced genomes revealed an almost complete co-linearity, never seen before between the genomes of strain Shi470 (a Peruvian isolate) and B38. CONCLUSION: These isolates are deprived of the main H. pylori virulence factors characterized previously, but are nonetheless associated with gastric neoplasia.


Assuntos
Genoma Bacteriano/genética , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Linfoma de Zona Marginal Tipo Células B/microbiologia , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas de Bactérias/genética , Análise por Conglomerados , Úlcera Duodenal/microbiologia , Evolução Molecular , Gastrite/microbiologia , Perfilação da Expressão Gênica , Ilhas Genômicas/genética , Humanos , Enteropatias/microbiologia , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa