Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Allergy ; 77(8): 2337-2354, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35174512

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are among the most ubiquitously used medications in the general population. Their broad anti-inflammatory, antipyretic, and analgesic effects are applied against symptoms of respiratory infections, including SARS-CoV-2, as well as in other acute and chronic inflammatory diseases that often coexist with allergy and asthma. However, the current pandemic of COVID-19 also revealed the gaps in our understanding of their mechanism of action, selectivity, and interactions not only during viral infections and inflammation, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs-exacerbated respiratory disease (NERD). In this context, the consensus report summarizes currently available knowledge, novel discoveries, and controversies regarding the use of NSAIDs in COVID-19, and the role of NSAIDs in asthma and viral asthma exacerbations. We also describe here novel mechanisms of action of leukotriene receptor antagonists (LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role of LTRA therapy in COVID-19 treatment. Moreover, we discuss interactions of novel T2 biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections and exacerbations of asthma and allergic diseases. Finally, we identify and summarize the major knowledge gaps and unmet needs in current eicosanoid research.


Assuntos
Asma , Tratamento Farmacológico da COVID-19 , Hipersensibilidade , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Asma/tratamento farmacológico , Consenso , Eicosanoides/metabolismo , Humanos , Hipersensibilidade/tratamento farmacológico , Inflamação/tratamento farmacológico , SARS-CoV-2
2.
Allergy ; 76(1): 114-130, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32279330

RESUMO

Eicosanoids are biologically active lipid mediators, comprising prostaglandins, leukotrienes, thromboxanes, and lipoxins, involved in several pathophysiological processes relevant to asthma, allergies, and allied diseases. Prostaglandins and leukotrienes are the most studied eicosanoids and established inducers of airway pathophysiology including bronchoconstriction and airway inflammation. Drugs inhibiting the synthesis of lipid mediators or their effects, such as leukotriene synthesis inhibitors, leukotriene receptors antagonists, and more recently prostaglandin D2 receptor antagonists, have been shown to modulate features of asthma and allergic diseases. This review, produced by an European Academy of Allergy and Clinical Immunology (EAACI) task force, highlights our current understanding of eicosanoid biology and its role in mediating human pathology, with a focus on new findings relevant for clinical practice, development of novel therapeutics, and future research opportunities.


Assuntos
Asma , Hipersensibilidade , Asma/etiologia , Consenso , Eicosanoides , Humanos , Leucotrienos
3.
Eur J Clin Pharmacol ; 73(7): 799-809, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28374082

RESUMO

BACKGROUND: Cysteinyl leukotrienes (LTC4, LTD4, and LTE4) are pro-inflammatory mediators of the 5-lipooxygenase (5-LO) pathway, that play an important role in bronchoconstriction, but can also enhance endothelial cell permeability and myocardial contractility, and are involved in many other inflammatory conditions. In the late 1990s, leukotriene receptor antagonists (LTRAs) were introduced in therapy for asthma and later on, approved for the relief of the symptoms of allergic rhinitis, chronic obstructive pulmonary disease, and urticaria. In addition, it has been shown that LTRAs may have a potential role in preventing atherosclerosis progression. PURPOSE: The aims of this short review are to delineate the potential cardiovascular protective role of a LTRA, montelukast, beyond its traditional use, and to foster the design of appropriate clinical trials to test this hypothesis. RESULTS AND CONCLUSIONS: What it is known about leukotriene receptor antagonists? •Leukotriene receptor antagonist, such as montelukast and zafirlukast, is used in asthma, COPD, and allergic rhinitis. • Montelukast is the most prescribed CysLT1 antagonist used in asthmatic patients. • Different in vivo animal studies have shown that leukotriene receptor antagonists can prevent the atherosclerosis progression, and have a protective role after cerebral ischemia. What we still need to know? • Today, there is a need for conducting clinical trials to assess the role of montelukast in reducing cardiovascular risk and to further understand the mechanism of action behind this effect.


Assuntos
Acetatos/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Antagonistas de Leucotrienos/uso terapêutico , Quinolinas/uso terapêutico , Acetatos/farmacologia , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Doenças Cardiovasculares/metabolismo , Ciclopropanos , Humanos , Antagonistas de Leucotrienos/farmacologia , Quinolinas/farmacologia , Transdução de Sinais , Sulfetos
4.
Biochim Biophys Acta ; 1851(4): 377-82, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25218301

RESUMO

The synthesis of oxygenated eicosanoids is the result of the coordinated action of several enzymatic activities, from phospholipase A2 that releases the polyunsaturated fatty acids from membrane phospholipids, to primary oxidative enzymes, such as cyclooxygenases and lipoxygenases, to isomerases, synthases and hydrolases that carry out the final synthesis of the biologically active metabolites. Cells possessing the entire enzymatic machinery have been studied as sources of bioactive eicosanoids, but early on evidence proved that biosynthetic intermediates, albeit unstable, could move from one cell type to another. The biosynthesis of bioactive compounds could therefore be the result of a coordinated effort by multiple cell types that has been named transcellular biosynthesis of the eicosanoids. In several cases cells not capable of carrying out the complete biosynthetic process, due to the lack of key enzymes, have been shown to efficiently contribute to the final production of prostaglandins, leukotrienes and lipoxins. We will review in vitro studies, complex functional models, and in vivo evidences of the transcellular biosynthesis of eicosanoids and the biological relevance of the metabolites resulting from this unique biosynthetic pathway. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".


Assuntos
Comunicação Celular , Eicosanoides/metabolismo , Transdução de Sinais , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Epoprostenol/metabolismo , Humanos , Leucotrieno A4/metabolismo , Lipoxinas/metabolismo , Tromboxano A2/metabolismo
5.
Pharmacol Res ; 103: 132-43, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26621246

RESUMO

PURPOSE: Patients with high cardiovascular risk due to ageing and/or comorbidity (diabetes, atherosclerosis) that require effective management of chronic pain may take advantage from new non-steroidal anti-inflammatory drugs (NSAIDs) that at clinical dosages may integrate the anti-inflammatory activity and reduced gastrointestinal side effects of selective cyclooxygenase-2 (COX-2) inhibitor (coxib) with a cardioprotective component involving antagonism of thromboxane A2 prostanoid (TP) receptor. METHODS: New compounds were obtained modulating the structure of the most potent coxib, lumiracoxib, to obtain novel multitarget NSAIDs endowed with balanced coxib and TP receptor antagonist properties. Antagonist activity at TP receptor (pA2) was evaluated for all compounds in human platelets and in an heterologous expression system by measuring prevention of aggregation and Gq-dependent production of intracellular inositol phosphate induced by the stable thromboxane A2 (TXA2) agonist U46619. COX-1 and COX-2 inhibitory activities were assessed in human washed platelets and lympho-monocytes suspension, respectively. COX selectivity was determined from dose-response curves by calculating a ratio (COX-2/COX-1) of IC50 values. RESULTS: The tetrazole derivative 18 and the trifluoromethan sulfonamido-isoster 20 were the more active antagonists at TP receptor, preventing human platelet aggregation and intracellular signalling, with pA2 values statistically higher from that of lumiracoxib. Comparative data regarding COX-2/COX-1 selectivity showed that while compounds 18 and 7 were rather potent and selective COX-2 inhibitor, compound 20 was somehow less potent and selective for COX-2. CONCLUSION: These results indicate that compounds 18 and 20 are two novel combined TP receptor antagonists and COX-2 inhibitors characterized by a fairly balanced COX-2 inhibitor activity and TP receptor antagonism and that they may represent a first optimization of the original structure to improve their multitarget activity.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Receptores de Tromboxanos/antagonistas & inibidores , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Adolescente , Adulto , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Diclofenaco/análogos & derivados , Diclofenaco/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Naftalenos/farmacologia , Naproxeno/farmacologia , Propionatos/farmacologia , Receptores de Tromboxanos/genética , Receptores de Tromboxanos/metabolismo , Adulto Jovem
6.
Prostaglandins Other Lipid Mediat ; 120: 97-102, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25908304

RESUMO

Polyunsaturated fatty acids (PUFAs), particularly the ω-3 PUFAs and COXIBs have been associated with decreased inflammation and the prevention of tumorigenesis. ω-3 PUFAs have shown to display multiple antitumour actions, while ω-6 PUFAs and its derived eicosanoids promote the effects in cancer cell growth, angiogenesis, and invasion. ω-3 PUFAs may act by suppressing the metabolism of arachidonic acid to form proinflammatory mediators or as a precursors of novel lipid mediators with pro-resolving activity, while COXIBs are able to modulate inflammatory response by inhibiting cyclooxygenase 2 (COX-2), an inducible prostaglandin synthase overexpressed in several human cancers. As recently has been postulated, the anti-inflammation and pro-resolution processes are not equivalent. A family of lipid mediators from ω-3 PUFAs can act as agonist promoting resolution, while antinflammatory agents such as COXIBs may act as antagonists limiting the inflammatory response. The present paper reviews the current knowledge about the role of PUFAs and its derivatives (metabolites), as well as the COXIBs activity in cancer process as a sinergic therapeutic alternative for cancer treatment.


Assuntos
Quimioprevenção/métodos , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Ácidos Graxos Insaturados/uso terapêutico , Neoplasias/prevenção & controle , Animais , Humanos
7.
Chembiochem ; 15(5): 734-42, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24677607

RESUMO

Lipopolysaccharide (LPS), the main cell-surface molecular constituent of Gram-negative bacteria, is synthesized in the inner membrane (IM) and transported to the outer membrane (OM) by the Lpt (lipopolysaccharide transport) machinery. Neosynthesized LPS is first flipped by MsbA across the IM, then transported to the OM by seven Lpt proteins located in the IM (LptBCFG), in the periplasm (LptA), and in the OM (LptDE). A functional OM is essential to bacterial viability and requires correct placement of LPS in the outer leaflet. Therefore, LPS biogenesis represents an ideal target for the development of novel antibiotics against Gram-negative bacteria. Although the structures of Lpt proteins have been elucidated, little is known about the mechanism of LPS transport, and few data are available on Lpt­LPS binding. We report here the first determination of the thermodynamic and kinetic parameters of the interaction between LptC and a fluorescent lipo-oligosaccharide (fLOS) in vitro. The apparent dissociation constant (Kd) of the fLOS­LptC interaction was evaluated by two independent methods. The first was based on fLOS capture by resin-immobilized LptC; the second used quenching of LptC intrinsic fluorescence by fLOS in solution. The Kd values by the two methods (71.4 and 28.8 µm, respectively) are very similar, and are of the same order of magnitude as that of the affinity of LOS for the upstream transporter, MsbA. Interestingly, both methods showed that fLOS binding to LptC is mostly irreversible, thus reflecting the fact that LPS can be released from LptC only when energy is supplied by ATP or in the presence of a higher-affinity LptA protein. A fluorescent glycolipid was synthesized: this also interacted irreversibly with LptC, but with lower affinity (apparent Kd=221 µM). This compound binds LptC at the LPS binding site and is a prototype for the development of new antibiotics targeting LPS transport in Gram-negative bacteria.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/metabolismo , Oligossacarídeos/metabolismo , Transporte Biológico , Escherichia coli/química , Proteínas de Escherichia coli/química , Fluorescência , Corantes Fluorescentes/análise , Corantes Fluorescentes/metabolismo , Lipopolissacarídeos/química , Proteínas de Membrana/química , Modelos Moleculares , Oligossacarídeos/química
8.
Pulm Pharmacol Ther ; 27(1): 10-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23806820

RESUMO

BACKGROUND: The concept of permanent narrowing of the airways resulting from chronic inflammation and fibrosis is called remodeling and is a common feature of asthma and chronic obstructive pulmonary disease (COPD). The eicosanoid contractile agents thromboxane A(2) (TxA(2)) and cysteinyl-leukotriene D(4) (LTD(4)) are among the recognized mitogens for human airway smooth muscle (ASM) cells. Statins are known to possess anti-inflammatory and immunomodulatory properties that are independent on their cholesterol-lowering effects and may result in clinical lung benefits. Rosuvastatin is the last agent of the lipid-lowering drugs to be introduced and experimental evidence indicates that it possess favorable pleiotropic effects in the cardiovascular and nervous systems. Yet, no data is available in the literature regarding its effects on human airway remodeling. The present study was aimed at examining the effect of rosuvastatin and the involvement of prenylated proteins in the response of human ASM cells to serum, epidermal growth factor (EGF) and eicosanoid contractile mitogens that activate TxA(2) prostanoid and LTD(4) receptors. METHODS: Cell growth was assessed by nuclear incorporation of [(3)H]thymidine in human ASM cells serum-starved and then stimulated for 48 h in MEM plus 0.1% BSA containing mitogens in the absence and presence of modulators of the mevalonate and prenylation pathways. RESULTS: We found that rosuvastatin dose-dependently inhibited serum-, EGF-, the TxA(2) stable analog U46619-, and LTD(4)-induced human ASM cells growth. All these effects were prevented by pretreatment with mevalonate. Addition of the prenylation substrates farnesol and geranylgeraniol reversed the effect of rosuvastatin on EGF and U46619, respectively. Interestingly, only mevalonate showed restoration of cell growth following rosuvastatin treatment in LTD(4) and LTD(4) plus EGF treated cells, suggesting a possible involvement of both farnesylated and geranylgeranylated proteins in the cysteinyl-LT-induced cell growth. CONCLUSIONS: The hydrophilic statin rosuvastatin exerts direct effects on human ASM cells mitogenic response in vitro by inhibiting prenylation of signaling proteins, likely small G proteins. These findings are consistent with previous observed involvement of small GTPase signaling in EGF- and U46619-induced human airway proliferation and corroborate the recent interest in the potential clinical benefits of statins in asthma/COPD.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Fluorbenzenos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Eicosanoides/metabolismo , Fator de Crescimento Epidérmico/administração & dosagem , Fator de Crescimento Epidérmico/metabolismo , Fluorbenzenos/administração & dosagem , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Leucotrieno D4/metabolismo , Ácido Mevalônico/farmacologia , Mitógenos/metabolismo , Miócitos de Músculo Liso/metabolismo , Pirimidinas/administração & dosagem , Receptores de Leucotrienos/metabolismo , Rosuvastatina Cálcica , Soroalbumina Bovina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/administração & dosagem
9.
Pharmacol Rev ; 63(3): 539-84, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21771892

RESUMO

The seven-transmembrane G protein-coupled receptors activated by leukotrienes are divided into two subclasses based on their ligand specificity for either leukotriene B(4) or the cysteinyl leukotrienes (LTC(4), LTD(4), and LTE(4)). These receptors have been designated BLT and CysLT receptors, respectively, and a subdivision into BLT(1) and BLT(2) receptors and CysLT(1) and CysLT(2) receptors has been established. However, recent findings have also indicated the existence of putative additional leukotriene receptor subtypes. Furthermore, other ligands interact with the leukotriene receptors. Finally, leukotrienes may also activate other receptor classes, such as purinergic receptors. The aim of this review is to provide an update on the pharmacology, expression patterns, and pathophysiological roles of the leukotriene receptors as well as the therapeutic developments in this area of research.


Assuntos
Regulação da Expressão Gênica , Receptores de Leucotrienos/classificação , Animais , Cisteína/agonistas , Cisteína/antagonistas & inibidores , Cisteína/metabolismo , Humanos , Agências Internacionais , Antagonistas de Leucotrienos/uso terapêutico , Leucotrienos/agonistas , Leucotrienos/metabolismo , Terapia de Alvo Molecular , Especificidade de Órgãos , Receptores de Leucotrienos/química , Receptores de Leucotrienos/genética , Receptores de Leucotrienos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Terminologia como Assunto
10.
Med Res Rev ; 33(2): 364-438, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22434418

RESUMO

Eicosanoids are biologically active lipids in both physiologic and pathophysiologic situations. These mediators rapidly generate at sites of inflammation and act through specific receptors that following the generation of a signal transduction cascade, lead to coordinated cellular responses to specific stimuli. Prostanoids, that is, prostaglandins and thromboxane A(2), are active products of the cyclooxygenase pathway, while leukotrienes and lipoxins derive from the lipoxygenase pathway. In addition, a complex family of prostaglandin isomers called isoprostanes is derived as free-radical products of oxidative metabolism. While there is a wide consensus on the importance of the balance between proaggregating (thromboxane A(2)) and antiaggregating (prostacyclin) cyclooxygenase products in cardiovascular homeostasis, an increasing body of evidence suggests a key role also for other eicosanoids generated by lipoxygenases, epoxygenases, and nonenzymatic pathways in cardiovascular diseases. This intricate network of lipid mediators is unique considering that from a single precursor, arachidonic acid, may derive an array of bioproducts that interact within each other synergizing or, more often, behaving as functional antagonists.


Assuntos
Aterosclerose/metabolismo , Doenças Cardiovasculares/metabolismo , Inibidores de Ciclo-Oxigenase/uso terapêutico , Eicosanoides/biossíntese , Prostaglandinas/biossíntese , Acidente Vascular Cerebral/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/fisiopatologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/fisiopatologia , Humanos , Prostaglandina-Endoperóxido Sintases/efeitos dos fármacos , Prostaglandina-Endoperóxido Sintases/metabolismo , Sensibilidade e Especificidade , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/fisiopatologia
11.
FASEB J ; 25(10): 3519-28, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21753081

RESUMO

The purpose of this study was to characterize enzyme, receptor, and signaling involved in the synthesis and the activity of cysteinyl leukotrienes (cys-LTs) in human umbilical vein endothelial cells (HUVECs). We used primary cultures of HUVECs and evaluated the formation of cys-LTs by RP-HPLC. Suicide inactivation and subcellular localization of the enzyme responsible for the conversion of leukotriene (LT) A(4) into LTC(4) were studied by repeated incubations with LTA(4) and immunogold electron microscopy. The CysLT(2) receptor in HUVECs was characterized by equilibrium binding studies, Western blot analysis, and immunohistochemistry. Concentration-response curves in HUVECs and in transfected COS-7 cells were used to characterize a novel specific CysLT(2) receptor antagonist (pA(2) of 8.33 and 6.79 against CysLT(2) and CysLT(1) receptors, respectively). The results obtained provide evidence that the mGST-II synthesizing LTC(4) in HUVECs is pharmacologically distinguishable from the LTC(4)-synthase (IC(50) of MK886 <5 µM for LTC(4)-synthase and >30 µM for mGST-II), is not suicide-inactivated and is strategically located on endothelial transport vesicles. The CysLT(2) receptor is responsible for the increase in intracellular Ca(2+) following exposure of HUVECs to cys-LTs and is coupled to a pertussis toxin-insensitive G(q) protein. The synthesis of cys-LTs from LTA(4) by endothelial cells is directly associated with the activation of the CysLT(2) receptor (EC(50) 0.64 µM) in a typical autocrine fashion.


Assuntos
Comunicação Autócrina/fisiologia , Células Endoteliais/metabolismo , Leucotrieno C4/biossíntese , Receptores de Leucotrienos/metabolismo , Animais , Transporte Biológico/fisiologia , Plaquetas/metabolismo , Células COS , Sinalização do Cálcio/fisiologia , Chlorocebus aethiops , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Leucotrieno A4/metabolismo , Receptores de Leucotrienos/genética
12.
Cell Mol Life Sci ; 68(18): 3109-20, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21213014

RESUMO

The structure-based design of a mutant form of the thromboxane A(2) prostanoid receptor (TP) was instrumental in characterizing the structural determinants of the hetero-dimerization process of this G protein coupled receptor (GPCR). The results suggest that the hetero-dimeric complexes between the TPα and ß isoforms are characterized by contacts between hydrophobic residues in helix 1 from both monomers. Functional characterization confirms that TPα-TPß hetero-dimerization serves to regulate TPα function through agonist-induced internalization, with important implications in cardiovascular homeostasis. The integrated approach employed in this study can be adopted to gain structural and functional insights into the dimerization/oligomerization process of all GPCRs for which the structural model of the monomer can be achieved at reasonable atomic resolution.


Assuntos
Ligação Proteica , Conformação Proteica , Multimerização Proteica/fisiologia , Receptores de Tromboxano A2 e Prostaglandina H2/química , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Sistema Cardiovascular/metabolismo , Linhagem Celular , Primers do DNA/genética , DNA Complementar/genética , Transferência Ressonante de Energia de Fluorescência , Homeostase/fisiologia , Humanos , Fosfatos de Inositol/metabolismo , Microscopia de Fluorescência , Modelos Estatísticos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida
13.
Front Pharmacol ; 13: 784214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211011

RESUMO

Leukotrienes are important pro-inflammatory lipid mediators derived from the arachidonic acid metabolism. In particular, cysteinyl leukotrienes, namely LTC4, LTD4, and LTE4 are involved in many of the principal features of asthma, while more recently they have also been implicated in cardiovascular diseases. COVID-19 is characterized by an overwhelming state of inflammation, sometimes resulting in an acute respiratory distress syndrome. Furthermore, severe COVID-19 patients present an endothelial cell damage characterized by a hyperinflammatory/procoagulant state and a widespread thrombotic disease. Leukotriene receptor antagonists, such as montelukast, have long been proven to have an efficacy in asthma, while more recently they have been suggested to have a protective role also in cardiovascular diseases. As elevated levels of LTE4 have been detected in bronchoalveolar lavage of COVID-19 patients, and montelukast, in addition to its anti-inflammatory properties, has been suggested to have a protective role in cardiovascular diseases, we decided to investigate whether this drug could also affect the platelet activation characteristic of COVID-19 syndrome. In this contribution, we demonstrate that montelukast inhibits platelet activation induced by plasma from COVID-19 patients by preventing the surface expression of tissue factor (TF) and P-selectin, reducing the formation of circulating monocyte- and granulocyte-platelet aggregates, and, finally, in completely inhibiting the release of TFpos-circulating microvesicles. These data suggest the repurposing of montelukast as a possible auxiliary treatment for COVID-19 syndrome.

14.
Cell Mol Life Sci ; 67(17): 2979-89, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20383734

RESUMO

In class A GPCRs the E/DRY motif is critical for receptor activation and function. According to experimental and computational data, R3.50 forms a double salt bridge with the adjacent E/D3.49 and E/D6.30 in helix 6, constraining the receptor in an inactive state. The disruption of this network of interactions facilitates conformational transitions that generate a signal or constitutive activity. Here we demonstrate that non-conservative substitution of either E129((3.49)) or E240((6.30)) of thromboxane prostanoid receptor (TP) resulted in mutants characterized by agonist-induced more efficient signaling properties, regardless of the G protein coupling. Results of computational modeling suggested a more effective interaction between G(q) and the agonist-bound forms of the TP mutants, compared to the wild type. Yet, none of the mutants examined revealed any increase in basal activity, precluding their classification as constitutively active mutants. Here, we propose that these alternative active conformations might be identified as superactive mutants or SAM.


Assuntos
Modelos Moleculares , Conformação Proteica , Receptores de Tromboxanos/química , Receptores de Tromboxanos/genética , Motivos de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Biologia Computacional/métodos , Proteínas de Ligação ao GTP/metabolismo , Mutação/genética , Oligonucleotídeos/genética , Receptores de Tromboxanos/metabolismo
15.
J Lipid Res ; 51(5): 1075-84, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19965602

RESUMO

Cysteinyl-leukotrienes (cysteinyl-LT) are rapidly generated at sites of inflammation and, in addition to their role in asthma, rhinitis, and other immune disorders, are increasingly regarded as significant inflammatory factors in cancer, gastrointestinal, cardiovascular diseases. We recently demonstrated that in monocyte/macrophage-like U937 cells, extracellular nucleotides heterologously desensitize CysLT(1) receptor (CysLT(1)R)-induced Ca(2+) transients. Given that monocytes express a number of other inflammatory and chemoattractant receptors, this study was aimed at characterizing transregulation between these different stimuli. We demonstrate that in U937 cells and in primary human monocytes, a series of inflammatory mediators activating G(i)-coupled receptor (FPR1, BLT(1)) desensitize CysLT(1)R-induced Ca(2+) response unidirectionally through activation of PKC. Conversely, PAF-R, exclusively coupled to G(q), cross-desensitizes CysLT(1)R without the apparent involvement of any kinase. Interestingly, G(s)-coupled receptors (beta(2)AR, H(1/2)R, EP(2/4)R) are also able to desensitize CysLT(1)R response through activation of PKA. Heterologous desensitization seems to affect mostly the G(i)-mediated signaling of the CysLT(1)R. The hierarchy of desensitization among agonists may be important for leukocyte signal processing at the site of inflammation. Considering that monocytes/macrophages are likely to be the major source of cysteinyl-LT in many immunological and inflammatory processes, shedding light on how their receptors are regulated will certainly help to better understand the role of these cells in orchestrating this complex network of integrated signals.


Assuntos
Dessensibilização Imunológica , Mediadores da Inflamação/imunologia , Monócitos/imunologia , Receptores de Leucotrienos/imunologia , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Colforsina/imunologia , Dimetil Sulfóxido/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , Isoproterenol/imunologia , Monócitos/citologia , Monócitos/metabolismo , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Peptídeos Cíclicos/farmacologia , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Leucotrienos/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Sistemas do Segundo Mensageiro/imunologia
16.
Front Pharmacol ; 11: 611561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519477

RESUMO

Cysteinyl leukotrienes are proinflammatory mediators with a clinically established role in asthma and a human genetic and preclinical role in cardiovascular pathology. Given that cardiovascular disease has a critical inflammatory component, the aim of this work was to conduct an observational study to verify whether the use of a cysteinyl leukotriene antagonist, namely, montelukast, may protect asthmatic patients from a major cardiovascular event and, therefore, represent an innovative adjunct therapy to target an inflammatory component in cardiovascular disease. We performed an observational retrospective 3-year study on eight hundred adult asthmatic patients 18 years or older in Albania, equally distributed into two cohorts, exposed or nonexposed to montelukast usage, matched by age and gender according to information reported in the data collection. Patients with a previous history of myocardial infarction or ischemic stroke were excluded. In summary, 37 (4.6%) of the asthmatic patients, 32 nonexposed, and five exposed to montelukast suffered a major cardiovascular event during the 3-year observation period. All the cardiovascular events, in either group, occurred among patients with an increased cardiovascular risk. Our analyses demonstrate that, independent from gender, exposure to montelukast remained a significant protective factor for incident ischemic events (78% or 76% risk reduction depending on type of analysis). The event-free Kaplan-Meier survival curves confirmed the lower cardiovascular event incidence in patients exposed to montelukast. Our data suggest that there is a potential preventative role of montelukast for incident cardiac ischemic events in the older asthmatic population, indicating a comorbidity benefit of montelukast usage in asthmatics by targeting cysteinyl leukotriene-driven cardiac disease inflammation.

17.
Front Pharmacol ; 10: 938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507425

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disorder, caused by genetic mutations in CF transmembrane conductance regulator protein. Several reports have indicated the presence of specific fatty acid alterations in CF patients, most notably decreased levels of plasmatic and tissue docosahexaenoic acid (DHA), the precursor of specialized pro-resolving mediators. We hypothesized that DHA supplementation could restore the production of DHA-derived products and possibly contribute to a better control of the chronic pulmonary inflammation observed in CF subjects. Sputum samples from 15 CF and 10 chronic obstructive pulmonary disease (COPD) subjects were collected and analyzed by LC/MS/MS, and blood fatty acid were profiled by gas chromatography upon lipid extraction and transmethylation. Interestingly, CF subjects showed increased concentrations of leukotriene B4 (LTB4), prostaglandin E2 (PGE2), and 15-hydroxyeicosatetraenoic acid (15-HETE), when compared with COPD patients, whereas the concentrations of DHA metabolites did not differ between the two groups. After DHA supplementation, not only DHA/arachidonic acid (AA) ratio and highly unsaturated fatty acid index were significantly increased in the subjects completing the study (p < 0.05) but also a reduction in LTB4 and 15-HETE was observed, together with a tendency for a decrease in PGE2, and an increase in 17-hydroxy-docosahexaenoic acid (17OH-DHA) levels. At the end of the washout period, LTB4, PGE2, 15-HETE, and 17OH-DHA showed a trend to return to baseline values. In addition, 15-HETE/17OH-DHA ratio in the same sample significantly decreased after DHA supplementation (p < 0.01) when compared with baseline. In conclusion, our results show here that in CF patients, an impairment in fatty acid metabolism, characterized by increased AA-derived metabolites and decreased DHA-derived metabolites, could be partially corrected by DHA supplementation.

18.
J Med Chem ; 62(18): 8443-8460, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31436984

RESUMO

The emerging pharmacological target soluble epoxide hydrolase (sEH) is a bifunctional enzyme exhibiting two different catalytic activities that are located in two distinct domains. Although the physiological role of the C-terminal hydrolase domain is well-investigated, little is known about its phosphatase activity, located in the N-terminal phosphatase domain of sEH (sEH-P). Herein we report the discovery and optimization of the first inhibitor of human and rat sEH-P that is applicable in vivo. X-ray structure analysis of the sEH phosphatase domain complexed with an inhibitor provides insights in the molecular basis of small-molecule sEH-P inhibition and helps to rationalize the structure-activity relationships. 4-(4-(3,4-Dichlorophenyl)-5-phenyloxazol-2-yl)butanoic acid (22b, SWE101) has an excellent pharmacokinetic and pharmacodynamic profile in rats and enables the investigation of the physiological and pathophysiological role of sEH-P in vivo.


Assuntos
Inibidores Enzimáticos/química , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/química , Animais , Sítios de Ligação , Domínio Catalítico , Desenho de Fármacos , Humanos , Ligantes , Masculino , Oxazóis/química , Monoéster Fosfórico Hidrolases/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Temperatura
19.
Biochem Pharmacol ; 158: 161-173, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315753

RESUMO

Chronic inflammation and pain is a major global health problem, and nonsteroidal anti-inflammatory drugs (NSAIDs) remain the most frequently prescribed drugs and common option for the treatment of inflammatory pain. However, they have the potential to cause serious complications, such as gastrointestinal (GI) lesions, bleeding and cardiovascular (CV) problems. NSAIDs exert their anti-inflammatory, analgesic and anti-pyretic actions by inhibiting the cyclooxygenases (COX)-1 and COX-2, key enzymes of the arachidonic acid (AA) cascade. However, not all the AA products or their receptors are pro-inflammatory. Therefore, given the multifaceted interactions of these lipid mediators where a single precursor can trigger multiple events with synergic or opposed function, it is easy to predict that any perturbation of this interplay will cause several unavoidable side effects. Today, we do not have a truly safe NSAID that minimizes GI damage and CV toxicity. One possibility to interfere with this intricate network, while trying to keep its fine balance, is to develop molecules affecting several targets. Different strategies have been proposed for a multitargeted intervention at different levels of the AA cascade, like inhibition of multiple upstream enzymes, such as COX, 5-lipoxygenase, or even soluble epoxide hydrolase and prostaglandin E synthase. Alternative strategies are more focused in the inhibition of targets downstream in the metabolic pathway, such as thromboxane synthase and/or blocking selective receptors. In this review we will briefly summarize the new strategies that have been proposed for a multitargeted pharmacological intervention on this metabolic cascade aimed at developing novel anti-inflammatory therapeutics.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Ácido Araquidônico/antagonistas & inibidores , Ácido Araquidônico/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/uso terapêutico , Araquidonato 5-Lipoxigenase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Redes e Vias Metabólicas/fisiologia , Dor/tratamento farmacológico , Dor/metabolismo , Prostaglandina-E Sintases/antagonistas & inibidores , Prostaglandina-E Sintases/metabolismo
20.
J Med Chem ; 61(13): 5758-5764, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29878767

RESUMO

Multitarget design offers access to bioactive small molecules with potentially superior efficacy and safety. Particularly multifactorial chronic inflammatory diseases demand multiple pharmacological interventions for stable treatment. By minor structural changes, we have developed a close analogue of the cysteinyl-leukotriene receptor antagonist zafirlukast that simultaneously inhibits soluble epoxide hydrolase and activates peroxisome proliferator-activated receptor γ. The triple modulator exhibits robust anti-inflammatory activity in vivo and highlights the therapeutic potential of designed multitarget agents.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Desenho de Fármacos , Polifarmacologia , Compostos de Tosil/farmacologia , Células 3T3 , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Domínio Catalítico , Epóxido Hidrolases/química , Epóxido Hidrolases/metabolismo , Células Hep G2 , Humanos , Indóis , Camundongos , Simulação de Acoplamento Molecular , PPAR gama/química , PPAR gama/metabolismo , Fenilcarbamatos , Sulfonamidas , Compostos de Tosil/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa