Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 23(4): e13410, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39030812

RESUMO

Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.


Assuntos
Bactérias , Microbiologia de Alimentos , Alimentos Marinhos , Vírus , Alimentos Marinhos/microbiologia , Bactérias/isolamento & purificação , Vírus/isolamento & purificação , Humanos , Inocuidade dos Alimentos , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/virologia , Animais , Manipulação de Alimentos/métodos
2.
Langmuir ; 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612996

RESUMO

Fracture or cracking essentially involves the formation of new interfaces. These patterns are usually studied as two-dimensional mosaics. The new surface that opens up is in the third dimension, along the thickness of the sample. The thickness is usually very small compared to the lateral dimensions of the pattern. A spectacular and distinctive departure from these everyday examples of cracks are columnar joints. Here, molten volcanic lava, by the sea, cools and cracks under appropriate thermal and elastic conditions, causing the crack system to grow downward, creating long, vertical columns with polygonal cross-section. The focus of this paper is the study of the elongated interfaces of these columns: how the cross-section of their outlines gradually undergoes a metamorphosis from a disordered-looking Gilbert tessellation to a well-ordered hexagonal Voronoi pattern. As the columns grow downward to lengths of several meters (in natural systems), their outline continuously changes, the center may shift, causing the column to twist. For the first time, the evolution of these crack mosaics has been simulated and mapped as a trajectory of a 4-vector tuple in a geometry-topology domain. The trajectory of the columnar joint systems is found to depend on the crack seed distribution and crack orientation. An empirical relationship between the system energy and the crack mosaic shape parameter λ has been proposed on the basis of principles of fracture mechanics. The total system energy shows a power-law dependence on λ with the exponent ß âˆ¼ 0.3 and λ ≈ 0.75 at crack maturation. The parameter values are validated by matching the proposed relation with energy estimates existing in the literature. The relation not only matches the visible changes in geometry but also provides a feasible measure of the energy of the system. The geometric energy for the polygonal mosaics in the transverse section has also been estimated as a function of time. The geometric energy moves toward a minimum as the mosaic becomes more Voronoi-like at maturation.

3.
Child Youth Serv Rev ; 120: 105768, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33281253

RESUMO

The paper examines 'exam emergency' in India through an engaging dialogue of importance, dissension, and contention over conducting all the annual entrance examinations amidst this covid-19 pandemic that have been postponed earlier due to nationwide lockdown. Drawing on the pre-exam living experiences, this paper presents the challenges and problems of student communities and the insecurities of their mental and physical health risks while they are preparing and appearing for their scheduled entrance tests. The paper finds no concrete attempt of negotiations from the authorities to channel majoritarian concerns. The lack of preparation from government and exam authorities to facilitate students in this crisis period has finally made many to fail writing their exam papers and left them behind with unfulfilled dreams.

4.
Chemosphere ; 353: 141539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417498

RESUMO

Increasing food waste is creating a global waste (and management) crisis. Globally, ∼1.6 billion tons of food is wasted annually, worth ∼$1.2 trillion. By reducing this waste or by turning it into valuable products, numerous economic advantages can be realized, including improved food security, lower production costs, biodegradable products, environmental sustainability, and cleaner solutions to the growing world's waste and garbage management. The appropriate handling of these detrimental materials can significantly reduce the risks to human health. Food waste is available in biodegradable forms and, with the potential to speed up microbial metabolism effectively, has immense potential in improving bio-based fertilizer generation. Synthetic inorganic fertilizers severely affect human health, the environment, and soil fertility, thus requiring immediate consideration. To address these problems, agricultural farming is moving towards manufacturing bio-based fertilizers via utilizing natural bioresources. Food waste-based bio-fertilizers could help increase yields, nutrients, and organic matter and mitigate synthetic fertilizers' adverse effects. These are presented and discussed in the review.


Assuntos
Fertilizantes , Eliminação de Resíduos , Humanos , Perda e Desperdício de Alimentos , Alimentos , Solo , Agricultura
5.
Sci Total Environ ; 914: 169763, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181950

RESUMO

Particulate matter (PM) pollution is one of the pressing environmental concerns confronting human civilization in the face of the Anthropocene era. Plants are continuously exposed to an accelerating PM, threatening their growth and productivity. Although plants and plant-based infrastructures can potentially reduce ambient air pollutants, PM still affects them morphologically, anatomically, and physiologically. This review comprehensively summarizes an up-to-date review of plant-PM interaction among different functional plant groups, PM deposition and penetration through aboveground and belowground plant parts, and plants' cellular strategies. Upon exposure, PM represses lipid desaturases, eventually leading to modification of cell wall and membrane and altering cell fluidity; consequently, plants can sense the pollutants and, thus, adapt different cellular strategies. The PM also causes a reduction in the photosynthetically active radiation. The study demonstrated that plants reduce stomatal density to avoid PM uptake and increase stomatal index to compensate for decreased gaseous exchange efficiency and transpiration rates. Furthermore, genes and gene sets associated with photosynthesis, glycolysis, gluconeogenesis, and the TCA cycle were dramatically lowered by PM stress. Several transcription factors, including MYB, C2H2, C3H, G2-like, and WRKY were induced, and metabolites such as proline and soluble sugar were accumulated to increase resistance against stressors. In addition, enzymatic and non-enzymatic antioxidants were also accumulated to scavenge the PM-induced reactive oxygen species (ROS). Taken together, this review provides an insight into plants' underlying cellular mechanisms and gene regulatory networks in response to the PM to determine strategies to preserve their structural and functional blend in the face of particulate pollution. The study concludes by recommending that future research should precisely focus on plants' response to short- and long-term PM exposure.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Humanos , Material Particulado/análise , Poluentes Ambientais/metabolismo , Poluentes Atmosféricos/análise , Plantas/metabolismo , Fotossíntese , Poeira
6.
Animals (Basel) ; 14(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338109

RESUMO

Napier grass (Pennisetum purpureum Schumach) supports a significant proportion of animal production in subtropical and tropical regions, but its quality is low and when offered alone, results in low ruminant production. Shifting the management of Napier grass towards a higher-quality feed increased milk yield and liveweight gain for small, mature cattle without supplementation. This review highlights the opportunity for further increases in milk and meat production for differing classes of livestock in the tropics and subtropics by improving the nutritive value of Napier grass using new best management practice flowing on to improve food security for the millions of people in these regions.

7.
Plants (Basel) ; 12(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050171

RESUMO

The issue of air pollution from particulate matter (PM) is getting worse as more and more people move into urban areas around the globe. Due to the complexity and diversity of pollution sources, it has long been hard to rely on source control techniques to manage this issue. Due to the fact that urban trees may provide a variety of ecosystem services, there is an urgent need to investigate alternative strategies for dramatically improving air quality. PM has always been a significant concern due to its adverse effects on humans and the entire ecosystem. The severity of this issue has risen in the current global environmental context. Numerous studies on respiratory and other human disorders have revealed a statistical relationship between human exposure to outdoor levels of particles or dust and harmful health effects. These risks are undeniably close to industrial areas where these airborne, inhalable particles are produced. The combined and individual effects of the particle and gaseous contaminants on plants' general physiology can be detrimental. According to research, plant leaves, the primary receptors of PM pollution, can function as biological filters to remove significant amounts of particles from the atmosphere of urban areas. This study showed that vegetation could provide a promising green infrastructure (GI) for better air quality through the canopy and leaf-level processes, going beyond its traditional role as a passive target and sink for air pollutants. Opportunities exist for urban GI as a natural remedy for urban pollution caused by PMs.

8.
Sci Total Environ ; 890: 164352, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37230354

RESUMO

Particulate matter (PM) pollution poses a significant risk to many ecosystems; as sessile organisms, plants are at particular risk from PM pollution since they cannot move away from it. Microorganisms are essential components of ecosystems that can help macro-organisms to cope with pollutants (such as PM). In the phyllosphere (the aerial/above-ground parts of plants colonized by microbial communities), plant-microbe associations have been found to promote plant development while also increasing host resilience to biotic and abiotic stressors. This review discusses how plant-microbe symbiosis in the phyllosphere potentially affects host survivability and efficiency in the face of pollution and factors such as climate change. Evidence is presented that plant-microbe associations can be beneficial, such as by degrading pollutants, yet also bring disadvantages, such as causing the loss of symbiotic organisms and/or inducing disease. It is suggested that plant genetics is a fundamental driver of the phyllosphere microbiome assembly, connecting phyllosphere microbiota to plant health management in adverse conditions. Finally, potential ways that essential community ecological processes might influence plant-microbe partnerships in the face of Anthropocene-linked changes and what this might mean for environmental management are discussed.


Assuntos
Poluentes Ambientais , Microbiota , Plantas , Poluição Ambiental , Simbiose
9.
Microorganisms ; 10(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36557600

RESUMO

Biofilm is a complex matrix made up of extracellular polysaccharides, DNA, and proteins that protect bacteria against physical, chemical, and biological stresses and allow them to survive in harsh environments. Safe and healthy foods are mandatory for saving lives. However, foods can be contaminated by pathogenic microorganisms at any stage from farm to fork. The contaminated foods allow pathogenic microorganisms to form biofilms and convert the foods into stigmatized poison for consumers. Biofilm formation by pathogenic microorganisms in agri-farm industries is still poorly understood and intricate to control. In biofilms, pathogenic bacteria are dwelling in a complex manner and share their genetic and physicochemical properties making them resistant to common antimicrobial agents. Therefore, finding the appropriate antibiofilm approaches is necessary to inhibit and eradicate the mature biofilms from foods and food processing surfaces. Advanced studies have already established several emerging antibiofilm approaches including plant- and microbe-derived biological agents, and they proved their efficacy against a broad-spectrum of foodborne pathogens. This review investigates the pathogenic biofilm-associated problems in agri-farm industries, potential remedies, and finding the solution to overcome the current challenges of antibiofilm approaches.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa