Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nature ; 463(7278): 191-6, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20016485

RESUMO

All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic.


Assuntos
Genes Neoplásicos/genética , Genoma Humano/genética , Mutação/genética , Neoplasias/genética , Adulto , Linhagem Celular Tumoral , Dano ao DNA/genética , Análise Mutacional de DNA , Reparo do DNA/genética , Dosagem de Genes/genética , Humanos , Perda de Heterozigosidade/genética , Masculino , Melanoma/etiologia , Melanoma/genética , MicroRNAs/genética , Mutagênese Insercional/genética , Neoplasias/etiologia , Polimorfismo de Nucleotídeo Único/genética , Medicina de Precisão , Deleção de Sequência/genética , Raios Ultravioleta
2.
Bioinformatics ; 26(24): 3051-8, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20966003

RESUMO

MOTIVATION: Copy number abnormalities (CNAs) represent an important type of genetic mutation that can lead to abnormal cell growth and proliferation. New high-throughput sequencing technologies promise comprehensive characterization of CNAs. In contrast to microarrays, where probe design follows a carefully developed protocol, reads represent a random sample from a library and may be prone to representation biases due to GC content and other factors. The discrimination between true and false positive CNAs becomes an important issue. RESULTS: We present a novel approach, called CNAseg, to identify CNAs from second-generation sequencing data. It uses depth of coverage to estimate copy number states and flowcell-to-flowcell variability in cancer and normal samples to control the false positive rate. We tested the method using the COLO-829 melanoma cell line sequenced to 40-fold coverage. An extensive simulation scheme was developed to recreate different scenarios of copy number changes and depth of coverage by altering a real dataset with spiked-in CNAs. Comparison to alternative approaches using both real and simulated datasets showed that CNAseg achieves superior precision and improved sensitivity estimates. AVAILABILITY: The CNAseg package and test data are available at http://www.compbio.group.cam.ac.uk/software.html.


Assuntos
Algoritmos , Variações do Número de Cópias de DNA , Neoplasias/genética , Composição de Bases , Linhagem Celular Tumoral , Genoma Humano , Humanos , Mutação , Análise de Sequência de DNA
3.
Nucleic Acids Res ; 35(2): e8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17158151

RESUMO

Microarray technology is currently one of the most widely-used technologies in biology. Many studies focus on inferring the function of an unknown gene from its co-expressed genes. Here, we are able to show that there are two types of positional artifacts in microarray data introducing spurious correlations between genes. First, we find that genes that are close on the microarray chips tend to have higher correlations between their expression profiles. We call this the 'chip artifact'. Our calculations suggest that the carry-over during the printing process is one of the major sources of this type of artifact, which is later confirmed by our experiments. Based on our experiments, the measured intensity of a microarray spot contains 0.1% (for fully-hybridized spots) to 93% (for un-hybridized ones) of noise resulting from this artifact. Secondly, we, for the first time, show that genes that are close on the microtiter plates in microarray experiments also tend to have higher correlations. We call this the 'plate artifact'. Both types of artifacts exist with different severity in all cDNA microarray experiments that we analyzed. Therefore, we develop an automated web tool-COP (COrrelations by Positional artifacts) to detect these artifacts in microarray experiments. COP has been integrated with the microarray data normalization tool, ExpressYourself, which is available at http://bioinfo.mbb.yale.edu/ExpressYourself/. Together, the two can eliminate most of the common noises in microarray data.


Assuntos
Artefatos , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Animais , Humanos , Internet
4.
Nat Genet ; 46(12): 1343-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25326703

RESUMO

Haplotype-resolved genome sequencing enables the accurate interpretation of medically relevant genetic variation, deep inferences regarding population history and non-invasive prediction of fetal genomes. We describe an approach for genome-wide haplotyping based on contiguity-preserving transposition (CPT-seq) and combinatorial indexing. Tn5 transposition is used to modify DNA with adaptor and index sequences while preserving contiguity. After DNA dilution and compartmentalization, the transposase is removed, resolving the DNA into individually indexed libraries. The libraries in each compartment, enriched for neighboring genomic elements, are further indexed via PCR. Combinatorial 96-plex indexing at both the transposition and PCR stage enables the construction of phased synthetic reads from each of the nearly 10,000 'virtual compartments'. We demonstrate the feasibility of this method by assembling >95% of the heterozygous variants in a human genome into long, accurate haplotype blocks (N50 = 1.4-2.3 Mb). The rapid, scalable and cost-effective workflow could enable haplotype resolution to become routine in human genome sequencing.


Assuntos
Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Mapeamento Cromossômico , Análise por Conglomerados , DNA/genética , Feminino , Biblioteca Gênica , Genoma Humano , Genômica , Heterozigoto , Humanos , Masculino , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Transposases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa