Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Am J Respir Cell Mol Biol ; 70(6): 457-467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38346220

RESUMO

Sepsis is a systemic inflammatory response that requires effective macrophage metabolic functions to resolve ongoing inflammation. Previous work showed that the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), mediates macrophage phagocytosis and cytokine production in response to lung infection. Here, we show that TRPV4 regulates glycolysis in a stiffness-dependent manner by augmenting macrophage glucose uptake by GLUT1. In addition, TRPV4 is required for LPS-induced phagolysosome maturation in a GLUT1-dependent manner. In a cecal slurry mouse model of sepsis, TRPV4 regulates sepsis-induced glycolysis as measured by BAL fluid (BALF) lactate and sepsis-induced lung injury as measured by BALF total protein and lung compliance. TRPV4 is necessary for bacterial clearance in the peritoneum to limit sepsis-induced lung injury. It is interesting that BALF lactate is increased in patients with sepsis compared with healthy control participants, supporting the relevance of lung cell glycolysis to human sepsis. These data show that macrophage TRPV4 is required for glucose uptake through GLUT1 for effective phagolysosome maturation to limit sepsis-induced lung injury. Our work presents TRPV4 as a potential target to protect the lung from injury in sepsis.


Assuntos
Transportador de Glucose Tipo 1 , Glicólise , Lesão Pulmonar , Macrófagos , Sepse , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/metabolismo , Sepse/metabolismo , Sepse/complicações , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Camundongos , Lesão Pulmonar/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Masculino , Glucose/metabolismo , Fagossomos/metabolismo , Líquido da Lavagem Broncoalveolar , Lipopolissacarídeos/farmacologia , Fagocitose , Modelos Animais de Doenças , Pulmão/metabolismo , Pulmão/patologia , Pulmão/imunologia
2.
Hepatology ; 76(5): 1376-1388, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35313030

RESUMO

BACKGROUND AND AIMS: Resolution of pathways that converge to induce deleterious effects in hepatic diseases, such as in the later stages, have potential antifibrotic effects that may improve outcomes. We aimed to explore whether humans and rodents display similar fibrotic signaling networks. APPROACH AND RESULTS: We assiduously mapped kinase pathways using 340 substrate targets, upstream bioinformatic analysis of kinase pathways, and over 2000 random sampling iterations using the PamGene PamStation kinome microarray chip technology. Using this technology, we characterized a large number of kinases with altered activity in liver fibrosis of both species. Gene expression and immunostaining analyses validated many of these kinases as bona fide signaling events. Surprisingly, the insulin receptor emerged as a considerable protein tyrosine kinase that is hyperactive in fibrotic liver disease in humans and rodents. Discoidin domain receptor tyrosine kinase, activated by collagen that increases during fibrosis, was another hyperactive protein tyrosine kinase in humans and rodents with fibrosis. The serine/threonine kinases found to be the most active in fibrosis were dystrophy type 1 protein kinase and members of the protein kinase family of kinases. We compared the fibrotic events over four models: humans with cirrhosis and three murine models with differing levels of fibrosis, including two models of fatty liver disease with emerging fibrosis. The data demonstrate a high concordance between human and rodent hepatic kinome signaling that focalizes, as shown by our network analysis of detrimental pathways. CONCLUSIONS: Our findings establish a comprehensive kinase atlas for liver fibrosis, which identifies analogous signaling events conserved among humans and rodents.


Assuntos
Hepatopatias , Receptor de Insulina , Humanos , Camundongos , Animais , Receptor de Insulina/metabolismo , Roedores , Cirrose Hepática/patologia , Fígado/patologia , Hepatopatias/patologia , Fibrose , Proteínas Quinases/metabolismo , Colágeno/metabolismo , Serina/metabolismo , Receptores com Domínio Discoidina/metabolismo , Treonina/metabolismo
3.
Alcohol Clin Exp Res ; 45(2): 338-350, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33368409

RESUMO

BACKGROUND: Sepsis and septic shock kill over 270,000 patients per year in the United States. Sepsis transitions from a hyper-inflammatory to a hypo-inflammatory phase. Alcohol dependence is a risk factor for mortality from sepsis. Ethanol (EtOH) exposure impairs pathogen clearance through mechanisms that are not fully understood. Sirtuin 2 (SIRT2) interferes with pathogen clearance in immune cells but its role in the effects of EtOH on sepsis is unknown. We studied the effect of EtOH exposure on hyper- and hypo-inflammation and the role of SIRT2 in mice. METHODS: We exposed C57Bl/6 (WT) mice to EtOH via drinking water and used intraperitoneal cecal slurry (CS)-induced sepsis to study: (i) 7-day survival, (ii) leukocyte adhesion (LA) in the mesenteric microcirculation during hyper- and hypo-inflammation, (iii) peritoneal cavity bacterial clearance, and (iv) SIRT2 expression in peritoneal macrophages. Using EtOH-exposed and lipopolysaccharide (LPS)-stimulated RAW 264.7 (RAW) cell macrophages for 4 hours or 24 hours, we studied: (i) tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), and SIRT2 expression, and (ii) the effect of the SIRT2 inhibitor AK-7 on inflammatory response at 24 hours. Lastly, we studied the effect of EtOH on sepsis in whole body Sirt2 knockout (SIRT2KO) mice during hyper- and hypo-inflammation, bacterial clearance, and 7-day survival. RESULTS: WT EtOH-sepsis mice showed: (i) Decreased survival, (ii) Muted LA in the microcirculation, (iii) Lower plasma TNF-α and IL-6 expression, (iv) Decreased bacterial clearance, and (v) Increased SIRT2 expression in peritoneal macrophages versus vehicle-sepsis. EtOH-exposed LPS-stimulated RAW cells showed: (i) Muted TNF-α, IL-6, and increased IL-10 expression at 4 hours, (ii) endotoxin tolerance at 24 hours, and (iii) reversal of endotoxin tolerance with the SIRT2 inhibitor AK-7. EtOH-exposed SIRT2KO-sepsis mice showed greater 7-day survival, LA, and bacterial clearance than WT EtOH-sepsis mice. CONCLUSION: EtOH exposure decreases survival and reduces the inflammatory response to sepsis via increased SIRT2 expression. SIRT2 is a potential therapeutic target in EtOH with sepsis.


Assuntos
Etanol/toxicidade , Imunidade/fisiologia , Sepse/imunologia , Sepse/metabolismo , Sirtuína 2/deficiência , Animais , Etanol/administração & dosagem , Feminino , Expressão Gênica , Imunidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7 , Sepse/genética , Sirtuína 2/genética
4.
J Hepatol ; 73(3): 616-627, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32220583

RESUMO

BACKGROUND & AIMS: Autophagy maintains cellular homeostasis and plays a critical role in the development of non-alcoholic fatty liver and steatohepatitis. The pseudokinase mixed lineage kinase domain-like (MLKL) is a key downstream effector of receptor interacting protein kinase 3 (RIP3) in the necroptotic pathway of programmed cell death. However, recent data reveal that MLKL also regulates autophagy. Herein, we tested the hypothesis that MLKL contributes to the progression of Western diet-induced liver injury in mice by regulating autophagy. METHODS: Rip3+/+, Rip3-/-, Mlkl+/+ and Mlkl-/- mice were fed a Western diet (FFC diet, high in fat, fructose and cholesterol) or chow for 12 weeks. AML12 and primary mouse hepatocytes were exposed to palmitic acid (PA). RESULTS: The FFC diet increased expression, phosphorylation and oligomerization of MLKL in the liver. Mlkl, but not Rip3, deficiency protected mice from FFC diet-induced liver injury. The FFC diet also induced accumulation of p62 and LC3-II, as well as markers of endoplasmic reticulum stress, in Mlkl+/+ but not Mlkl-/- mice. Mlkl deficiency in mice also prevented the inhibition of autophagy by a protease inhibitor, leupeptin. Using an mRFP-GFP-LC3 reporter in cultured hepatocytes revealed that PA blocked the fusion of autophagosomes with lysosomes. PA triggered MLKL expression and translocation, first to autophagosomes and then to the plasma membrane, independently of Rip3. Mlkl, but not Rip3, deficiency prevented inhibition of autophagy in PA-treated hepatocytes. Overexpression of Mlkl blocked autophagy independently of PA. Additionally, pharmacologic inhibition of autophagy induced MLKL expression and translocation to the plasma membrane in hepatocytes. CONCLUSIONS: Taken together, these data indicate that MLKL-dependent, but RIP3-independent, signaling contributes to FFC diet-induced liver injury by inhibiting autophagy. LAY SUMMARY: Autophagy is a regulated process that maintains cellular homeostasis. Impaired autophagy contributes to cell injury and death, thus playing a critical role in the pathogenesis of a number of diseases, including non-alcohol-associated fatty liver and steatohepatitis. Herein, we show that Mlkl-dependent, but Rip3-independent, signaling contributed to diet-induced liver injury and inflammatory responses by inhibiting autophagy. These data identify a novel co-regulatory mechanism between necroptotic and autophagic signaling pathways in non-alcoholic fatty liver disease.


Assuntos
Autofagia/genética , Dieta Ocidental/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Transformada , Membrana Celular/metabolismo , Modelos Animais de Doenças , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Ácido Palmítico/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos
5.
Am J Physiol Gastrointest Liver Physiol ; 315(1): G66-G79, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29597356

RESUMO

Complement plays a crucial role in microbial defense and clearance of apoptotic cells. Emerging evidence suggests complement is an important contributor to alcoholic liver disease. While complement component 1, Q subcomponent (C1q)-dependent complement activation contributes to ethanol-induced liver injury, the role of the alternative pathway in ethanol-induced injury is unknown. Activation of complement via the classical and alternative pathways was detected in alcoholic hepatitis patients. Female C57BL/6J [wild type (WT)], C1q-deficient ( C1qa-/-, lacking classical pathway activation), complement protein 4-deficient ( C4-/-, lacking classical and lectin pathway activation), complement factor D-deficient ( FD-/-, lacking alternative pathway activation), and C1qa/FD-/- (lacking classical and alternative pathway activation) mice were fed an ethanol-containing liquid diet or pair-fed control diet for 4 or 25 days. Following chronic ethanol exposure, liver injury, steatosis, and proinflammatory cytokine expression were increased in WT but not C1qa-/-, C4-/-, or C1qa/FD-/- mice. In contrast, liver injury, steatosis, and proinflammatory mediators were robustly increased in ethanol-fed FD-/- mice compared with WT mice. Complement activation, assessed by hepatic accumulation of C1q and complement protein 3 (C3) cleavage products (C3b/iC3b/C3c), was evident in livers of WT mice in response to both short-term and chronic ethanol. While C1q accumulated in ethanol-fed FD-/- mice (short term and chronic), C3 cleavage products were detected after short-term but not chronic ethanol. Consistent with impaired complement activation, chronic ethanol induced the accumulation of apoptotic cells and fibrogenic responses in the liver of FD-/- mice. These data highlight the protective role of complement factor D (FD) and suggest that FD-dependent amplification of complement is an adaptive response that promotes hepatic healing and recovery in response to chronic ethanol. NEW & NOTEWORTHY Complement, a component of the innate immune system, is an important pathophysiological contributor to ethanol-induced liver injury. We have identified a novel role for factor D, a component of the alternative pathway, in protecting the liver from ethanol-induced inflammation, accumulation of apoptotic hepatocytes, and profibrotic responses. These data indicate a dual role of complement with regard to inflammatory and protective responses and suggest that accumulation of apoptotic cells impairs hepatic healing/recovery during alcoholic liver disease.


Assuntos
Etanol , Inflamação , Hepatopatias Alcoólicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Depressores do Sistema Nervoso Central/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Fator D do Complemento/metabolismo , Via Alternativa do Complemento/efeitos dos fármacos , Via Alternativa do Complemento/fisiologia , Citocinas/imunologia , Etanol/metabolismo , Etanol/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/prevenção & controle , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/metabolismo
6.
Hepatology ; 64(5): 1518-1533, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27301788

RESUMO

Multiple pathways of programmed cell death are important in liver homeostasis. Hepatocyte death is associated with progression of nonalcoholic fatty liver disease, and inhibition of apoptosis partially protects against liver injury in response to a high-fat diet (HFD). However, the contribution of necroptosis, a caspase-independent pathway of cell death, to HFD-induced liver injury is not known. Wild-type C57BL/6 and receptor interacting protein (RIP) 3-/- mice were randomized to chow or HFD. HFD-fed C57BL/6 mice increased expression of RIP3, the master regulator of necroptosis, as well as phosphorylated mixed lineage kinase domain-like, an effector of necroptotic cell death, in liver. HFD did not increase phosphorylated mixed lineage kinase domain-like in RIP3-/- mice. HFD increased fasting insulin and glucose, as well as glucose intolerance, in C57BL/6 mice. RIP3-/- mice were glucose-intolerant even on the chow diet; HFD further increased fasting glucose and insulin but not glucose intolerance. HFD also increased hepatic steatosis, plasma alanine aminotransferase activity, inflammation, oxidative stress, and hepatocellular apoptosis in wild-type mice; these responses were exacerbated in RIP3-/- mice. Importantly, increased inflammation and injury were associated with early indicators of fibrosis in RIP3-/- compared to C57BL/6 mice. Culture of AML12 hepatocytes with palmitic acid increased cytotoxicity through apoptosis and necrosis. Inhibition of RIP1 with necrostatin-1 or small interfering RNA knockdown of RIP3 reduced palmitic acid-induced cytotoxicity. CONCLUSION: Absence of RIP3, a key mediator of necroptosis, exacerbated HFD-induced liver injury, associated with increased inflammation and hepatocyte apoptosis, as well as early fibrotic responses; these findings indicate that shifts in the mode of hepatocellular death can influence disease progression and have therapeutic implications because manipulation of hepatocyte cell death pathways is being considered as a target for treatment of nonalcoholic fatty liver disease. (Hepatology 2016;64:1518-1533).


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica/etiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Animais , Apoptose , Morte Celular , Hepatócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Distribuição Aleatória
7.
Hepatology ; 64(6): 1978-1993, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27628766

RESUMO

Lipopolysaccharide (LPS)-mediated activation of Toll-like receptors (TLRs) in hepatic macrophages and injury to hepatocytes are major contributors to the pathogenesis of alcoholic liver disease. However, the mechanisms by which TLR-dependent inflammatory responses and alcohol-induced hepatocellular damage coordinately lead to alcoholic liver disease are not completely understood. In this study, we found that mice deficient in interleukin-1 receptor-associated kinase M (IRAKM), a proximal TLR pathway molecule typically associated with inhibition of TLR signaling, were actually protected from chronic ethanol-induced liver injury. In bone marrow-derived macrophages challenged with low concentrations of LPS, which reflect the relevant pathophysiological levels of LPS in both alcoholic patients and ethanol-fed mice, the IRAKM Myddosome was preferentially formed. Further, the IRAKM Myddosome mediated the up-regulation of Mincle, a sensor for cell death. Mincle-deficient mice were also protected from ethanol-induced liver injury. The endogenous Mincle ligand spliceosome-associated protein 130 (SAP130) is a danger signal released by damaged cells; culture of hepatocytes with ethanol increased the release of SAP130. Ex vivo studies in bone marrow-derived macrophages suggested that SAP130 and LPS synergistically activated inflammatory responses, including inflammasome activation. CONCLUSION: This study reveals a novel IRAKM-Mincle axis that contributes to the pathogenesis of ethanol-induced liver injury. (Hepatology 2016;64:1978-1993).


Assuntos
Morte Celular/fisiologia , Inflamação/etiologia , Quinases Associadas a Receptores de Interleucina-1/fisiologia , Lectinas Tipo C/fisiologia , Hepatopatias Alcoólicas/fisiopatologia , Proteínas de Membrana/fisiologia , Animais , Doença Crônica , Feminino , Lipopolissacarídeos/administração & dosagem , Camundongos , NF-kappa B/fisiologia
8.
Alcohol Clin Exp Res ; 41(4): 719-726, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28165624

RESUMO

BACKGROUND: Toll-like receptor 4 (TLR4) is critical for ethanol (EtOH)-induced liver injury. TLR4 signaling is mediated by 2 proximal adaptor molecules: myeloid differentiation primary response protein (MyD88) and TLR-domain-containing adaptor-inducing interferon-ß (TRIF). Studies utilizing global knockouts of MyD88 and TRIF identified a predominant role for TRIF signaling in the progression of EtOH-induced liver injury. In contrast, IL-1 receptor, which signals solely via the MyD88 pathway, is also known to mediate EtOH-induced liver injury. We postulated that a cell-specific role for MyD88 in myeloid cells might explain these apparently discrepant roles of MyD88. Here we made use of myeloid-specific MyD88-deficient (MyD88LysM-KO ) mice generated by crossing LysM-CRE mice with MyD88fl/fl mice to test this hypothesis. METHODS: MyD88LysM-KO and littermate controls were fed a Lieber-DeCarli EtOH-containing diet or pair-fed control diets for 25 days. RESULTS: Littermate control, but not MyD88LysM-KO , mice developed early stages of EtOH-induced liver injury including elevated plasma alanine aminotransferase and increased hepatic triglycerides. Lobular inflammation and expression of pro-inflammatory cytokines/chemokines was increased in control but not MyD88LysM-KO . Further, EtOH-induced inflammasome activation, indicated by the presence of cleaved caspase-1 and mature IL-1ß protein, was also ameliorated in livers of MyD88LysM-KO mice. In contrast, chronic EtOH-induced apoptosis, assessed via TUNEL staining, was independent of myeloid-MyD88 expression. CONCLUSIONS: Collectively, these data demonstrate a cell-specific role for MyD88 in the development of chronic EtOH-induced liver injury. While MyD88LysM-KO still exhibited hepatocellular apoptosis in response to chronic EtOH, the absence of MyD88 on myeloid cells prevented the development of hepatic steatosis and inflammation.


Assuntos
Etanol/toxicidade , Hepatite/metabolismo , Hepatócitos/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fator 88 de Diferenciação Mieloide/deficiência , Animais , Morte Celular/fisiologia , Etanol/administração & dosagem , Feminino , Hepatite/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Hepatopatias Alcoólicas/patologia , Camundongos , Camundongos Knockout , Distribuição Aleatória
9.
Alcohol Clin Exp Res ; 41(2): 345-358, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28103636

RESUMO

BACKGROUND: Liver damage is a serious and sometimes fatal consequence of long-term alcohol intake, which progresses from early-stage fatty liver (steatosis) to later-stage steatohepatitis with inflammation and fibrosis/necrosis. However, very little is known about earlier stages of liver disruption that may occur in problem drinkers, those who drink excessively but are not dependent on alcohol. METHODS: We examined how repeated binge-like alcohol drinking in C57BL/6 mice altered liver function, as compared with a single binge-intake session and with repeated moderate alcohol consumption. We measured a number of markers associated with early- and later-stage liver disruption, including liver steatosis, measures of liver cytochrome P4502E1 (CYP2E1) and alcohol dehydrogenase (ADH), alcohol metabolism, expression of cytokine mRNA, accumulation of 4-hydroxynonenal (4-HNE) as an indicator of oxidative stress, and alanine transaminase/aspartate transaminase as a measure of hepatocyte injury. RESULTS: Importantly, repeated binge-like alcohol drinking increased triglyceride levels in the liver and plasma, and increased lipid droplets in the liver, indicators of steatosis. In contrast, a single binge-intake session or repeated moderate alcohol consumption did not alter triglyceride levels. In addition, alcohol exposure can increase rates of alcohol metabolism through CYP2E1 and ADH, which can potentially increase oxidative stress and liver dysfunction. Intermittent, excessive alcohol intake increased liver CYP2E1 mRNA, protein, and activity, as well as ADH mRNA and activity. Furthermore, repeated, binge-like drinking, but not a single binge or moderate drinking, increased alcohol metabolism. Finally, repeated, excessive intake transiently elevated mRNA for the proinflammatory cytokine IL-1B and 4-HNE levels, but did not alter markers of later-stage liver hepatocyte injury. CONCLUSIONS: Together, we provide data suggesting that even relatively limited binge-like alcohol drinking can lead to disruptions in liver function, which might facilitate the transition to more severe forms of liver damage.


Assuntos
Consumo de Bebidas Alcoólicas/patologia , Consumo de Bebidas Alcoólicas/psicologia , Consumo Excessivo de Bebidas Alcoólicas/patologia , Consumo Excessivo de Bebidas Alcoólicas/psicologia , Hepatite Alcoólica/patologia , Alanina Transaminase/sangue , Álcool Desidrogenase/biossíntese , Álcool Desidrogenase/genética , Aldeídos/metabolismo , Animais , Aspartato Aminotransferases/sangue , Depressores do Sistema Nervoso Central/sangue , Citocromo P-450 CYP2E1/biossíntese , Citocromo P-450 CYP2E1/genética , Etanol/sangue , Interleucina-1/biossíntese , Testes de Função Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Gene Expr ; 17(1): 61-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27302422

RESUMO

Proinflammatory activity of hepatic macrophages plays a key role during progression of alcoholic liver disease (ALD). Since mixed lineage kinase 3 (MLK3)-dependent phosphorylation of JNK is involved in the activation of macrophages, we tested the hypothesis that myeloid MLK3 contributes to chronic ethanol-induced inflammatory responses in liver, leading to hepatocyte injury and cell death. Primary cultures of Kupffer cells, as well in vivo chronic ethanol feeding, were used to interrogate the role of MLK3 in the progression of liver injury. Phosphorylation of MLK3 was increased in primary cultures of Kupffer cells isolated from ethanol-fed rats compared to cells from pair-fed rats. Kupffer cells from ethanol-fed rats were more sensitive to LPS-stimulated cytokine production; this sensitization was normalized by pharmacological inhibition of MLK3. Chronic ethanol feeding to mice increased MLK3 phosphorylation robustly in F4/80(+) Kupffer cells, as well as in isolated nonparenchymal cells. MLK3(-/-) mice were protected from chronic ethanol-induced phosphorylation of MLK3 and JNK, as well as multiple indicators of liver injury, including increased ALT/AST, inflammatory cytokines, and induction of RIP3. However, ethanol-induced steatosis and hepatocyte apoptosis were not affected by MLK3. Finally, chimeric mice lacking MLK3 only in myeloid cells were also protected from chronic ethanol-induced phosphorylation of JNK, expression of inflammatory cytokines, and increased ALT/AST. MLK3 expression in myeloid cells contributes to phosphorylation of JNK, increased cytokine production, and hepatocyte injury in response to chronic ethanol. Our data suggest that myeloid MLK3 could be targeted for developing potential therapeutic strategies to suppress liver injury in ALD patients.


Assuntos
Etanol/efeitos adversos , Hepatócitos/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Feminino , Hepatócitos/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
12.
J Biol Chem ; 288(31): 22565-75, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23788643

RESUMO

Complement activation is implicated in the development of obesity and insulin resistance, and loss of signaling by the anaphylatoxin C3a prevents obesity-induced insulin resistance in mice. Here we have identified C1q in the classical pathway as required for activation of complement in response to high fat diets. After 8 weeks of high fat diet, wild-type mice became obese and developed glucose intolerance. This was associated with increased apoptotic cell death and accumulation of complement activation products (C3b/iC3b/C3c) in liver and adipose tissue. Previous studies have shown that high fat diet-induced apoptosis is dependent on Bid; here we report that Bid-mediated apoptosis was required for complement activation in adipose and liver. Although C1qa deficiency had no effect on high fat diet-induced apoptosis, accumulation of complement activation products and the metabolic complications of high fat diet-induced obesity were dependent on C1q. When wild-type mice were fed a high fat diet for only 3 days, hepatic insulin resistance was associated with the accumulation of C3b/iC3b/C3c in the liver. Mice deficient in C3a receptor were protected against this early high fat diet-induced hepatic insulin resistance, whereas mice deficient in the negative complement regulator CD55/DAF were more sensitive to the high fat diet. C1qa(-/-) mice were also protected from high fat diet-induced hepatic insulin resistance and complement activation. Evidence of complement activation was also detected in adipose tissue of obese women compared with lean women. Together, these studies reveal an important role for C1q in the classical pathway of complement activation in the development of high fat diet-induced insulin resistance.


Assuntos
Gorduras na Dieta/administração & dosagem , Glucose/metabolismo , Homeostase , Resistência à Insulina , Fígado/metabolismo , Glicoproteínas de Membrana/genética , Receptores de Complemento/genética , Tecido Adiposo/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
J Hepatol ; 61(5): 1029-37, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24946281

RESUMO

BACKGROUND & AIMS: Alcoholic liver disease is associated with inflammation and cell death. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with anti-apoptotic and anti-inflammatory properties. Here we tested the hypothesis that induction of HO-1 or treatment with a carbon monoxide releasing molecule (CORM) during chronic ethanol exposure protects and/or reverses ethanol-induced liver injury. METHODS: Female C57BL/6J mice were allowed free access to a complete liquid diet containing ethanol or to pair-fed control diets for 25days. Mice were treated with cobalt protoporphyrin (CoPP) to induce HO-1 expression during ethanol feeding or once liver injury had been established. Mice were also treated with CORM-A1, a CO-releasing molecule (CORM), after ethanol-induced liver injury was established. The impact of HO-1 induction on ethanol-induced cell death was investigated in primary cultures of hepatocytes. RESULTS: Induction of HO-1 during or after ethanol feeding, as well as treatment with CORM-A1, ameliorated ethanol-induced increases in AST and expression of mRNAs for inflammatory cytokines. Treatment with CoPP or CORM-A1 also reduced hepatocyte cell death, indicated by decreased accumulation of CK18 cleavage products and reduced RIP3 expression in hepatocytes. Exposure of primary hepatocyte cultures to ethanol increased their sensitivity to TNFα-induced cell death; this response was attenuated by necrostatin-1, an inhibitor of necroptosis, but not by caspase inhibitors. Induction of HO-1 with CoPP or CORM-3 treatment normalized the sensitivity of hepatocytes to TNFα-induced cell death after ethanol exposure. CONCLUSIONS: Therapeutic strategies to increase HO-1 and/or modulate CO availability ameliorated chronic ethanol-induced liver injury in mice, at least in part by decreasing hepatocellular death.


Assuntos
Monóxido de Carbono/metabolismo , Etanol/toxicidade , Heme Oxigenase-1/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteínas de Membrana/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Boranos/farmacologia , Carbonatos/farmacologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/genética , Citocinas/metabolismo , Indução Enzimática/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/biossíntese , Hepatócitos/patologia , Masculino , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Protoporfirinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
14.
Hepatology ; 57(5): 1773-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23319235

RESUMO

UNLABELLED: Hepatocyte cell death via apoptosis and necrosis are major hallmarks of ethanol-induced liver injury. However, inhibition of apoptosis is not sufficient to prevent ethanol-induced hepatocyte injury or inflammation. Because receptor-interacting protein kinase (RIP) 3-mediated necroptosis, a nonapoptotic cell death pathway, is implicated in a variety of pathological conditions, we tested the hypothesis that ethanol-induced liver injury is RIP3-dependent and RIP1-independent. Increased expression of RIP3 was detected in livers of mice after chronic ethanol feeding, as well as in liver biopsies from patients with alcoholic liver disease. Chronic ethanol feeding failed to induce RIP3 in the livers of cytochrome P450 2E1 (CYP2E1)-deficient mice, indicating CYP2E1-mediated ethanol metabolism is critical for RIP3 expression in response to ethanol feeding. Mice lacking RIP3 were protected from ethanol-induced steatosis, hepatocyte injury, and expression of proinflammatory cytokines. In contrast, RIP1 expression in mouse liver remained unchanged following ethanol feeding, and inhibition of RIP1 kinase by necrostatin-1 did not attenuate ethanol-induced hepatocyte injury. Ethanol-induced apoptosis, assessed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling-positive nuclei and accumulation of cytokeratin-18 fragments in the liver, was independent of RIP3. CONCLUSION: CYP2E1-dependent RIP3 expression induces hepatocyte necroptosis during ethanol feeding. Ethanol-induced hepatocyte injury is RIP3-dependent, but independent of RIP1 kinase activity; intervention of this pathway could be targeted as a potential therapeutic strategy.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Etanol/efeitos adversos , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Adulto , Animais , Apoptose , Biópsia , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Modelos Animais de Doenças , Feminino , Hepatócitos/patologia , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Hepatopatias Alcoólicas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
15.
Hepatology ; 57(5): 1980-91, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23174952

RESUMO

UNLABELLED: Macrophage migration inhibitory factor (MIF), a multipotent protein that exhibits both cytokine and chemotactic properties, is expressed by many cell types, including hepatocytes and nonparenchymal cells. We hypothesized that MIF is a key contributor to liver injury after ethanol exposure. Female C57BL/6 or MIF-/- mice were fed an ethanol-containing liquid diet or pair-fed control diet for 4 (11% total kcal;early response) or 25 (32% kcal; chronic response) days. Expression of MIF messenger RNA (mRNA) was induced at both 4 days and 25 days of ethanol feeding. After chronic ethanol, hepatic triglycerides and plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased in wildtype, but not MIF-/-, mice. In order to understand the role of MIF in chronic ethanol-induced liver injury, we investigated the early response of wildtype and MIF-/- to ethanol. Ethanol feeding for 4 days increased apoptosis of hepatic macrophages and activated complement in both wildtype and MIF-/- mice. However, tumor necrosis factor alpha (TNF-α) expression was increased only in wildtype mice. This attenuation of TNF-α expression was associated with fewer F4/80+ macrophages in liver of MIF-/- mice. After 25 days of ethanol feeding, chemokine expression was increased in wildtype mice, but not MIF-/- mice. Again, this protection was associated with decreased F4/80+ cells in MIF-/- mice after ethanol feeding. Chronic ethanol feeding also sensitized wildtype, but not MIF-/-, mice to lipopolysaccharide, increasing chemokine expression and monocyte recruitment into the liver. CONCLUSION: Taken together, these data indicate that MIF is an important mediator in the regulation of chemokine production and immune cell infiltration in the liver during ethanol feeding and promotes ethanol-induced steatosis and hepatocyte damage.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/efeitos adversos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Oxirredutases Intramoleculares/metabolismo , Fígado/metabolismo , Fígado/patologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Quimiocinas/metabolismo , Modelos Animais de Doenças , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Oxirredutases Intramoleculares/genética , Lipopolissacarídeos/farmacologia , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
J Leukoc Biol ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066660

RESUMO

Alcohol use disorder, reported by one in eight critically ill patients, is a risk factor for death in sepsis patients. Sepsis, the leading cause of death kills over 270,000 patients in the United States alone and remains without targeted therapy. Immune response in sepsis transitions from an early hyper-inflammation to persistent inflammation and immunosuppression and multiple organ dysfunction during late sepsis. Innate immunity is the first line of defense against pathogen invasion. Ethanol exposure is known to impair innate and adaptive immune response and bacterial clearance in sepsis patients. Specifically, ethanol-exposure is known to modulate every aspect of innate immune response with and without sepsis. Multiple molecular mechanisms are implicated in causing dysregulated immune response in ethanol-exposure with sepsis, but targeted treatments have remained elusive. In this manuscript, we outline the effects of ethanol-exposure on various innate immune cell types in general and during sepsis.

17.
Redox Biol ; 63: 102717, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37120930

RESUMO

Hemoglobin (Hb) present in the lung epithelium is of unknown significance. However Hb being an nitric oxide (NO) scavenger can bind to NO and reduce its deleterious effects. Hence we postulated an NO scavenging role for this lung Hb. Doing transwell co-culture with bronchial epithelial cells, A549/16-HBE (apical) and human airway smooth muscle cells (HASMCs as basal), we found that Hb can protect the smooth muscle soluble guanylyl cyclase (sGC) from excess NO. Inducing the apical A549/16-HBE cells with cytokines to trigger iNOS expression and NO generation caused a time dependent increase in SNO-sGC and this was accompanied with a concomitant drop in sGC-α1ß1 heterodimerization. Silencing Hbαß in the apical cells further increased the SNO on sGC with a faster drop in the sGC heterodimer and these effects were additive along with further silencing of thioredoxin 1 (Trx1). Since heme of Hb is critical for NO scavenging we determined the Hb heme in a mouse model of allergic asthma (OVA) and found that Hb in the inflammed OVA lungs was low in heme or heme-free relative to those of naïve lungs. Further we established a direct correlation between the status of the sGC heterodimer and the Hb heme from lung samples of human asthma, iPAH, COPD and cystic fibrosis. These findings present a new mechanism of protection of lung sGC by the epithelial Hb, and suggests that this protection maybe lost in asthma or COPD where lung Hb is unable to scavenge the NO due to it being heme-deprived.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Humanos , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo , Guanilato Ciclase/genética , Óxido Nítrico/metabolismo , Pulmão/metabolismo , Asma/genética , Músculo Liso/metabolismo , Hemoglobinas , Heme/metabolismo , Epitélio/metabolismo
18.
Aging Cell ; 22(7): e13852, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37101412

RESUMO

Perturbed metabolism of ammonia, an endogenous cytotoxin, causes mitochondrial dysfunction, reduced NAD+ /NADH (redox) ratio, and postmitotic senescence. Sirtuins are NAD+ -dependent deacetylases that delay senescence. In multiomics analyses, NAD metabolism and sirtuin pathways are enriched during hyperammonemia. Consistently, NAD+ -dependent Sirtuin3 (Sirt3) expression and deacetylase activity were decreased, and protein acetylation was increased in human and murine skeletal muscle/myotubes. Global acetylomics and subcellular fractions from myotubes showed hyperammonemia-induced hyperacetylation of cellular signaling and mitochondrial proteins. We dissected the mechanisms and consequences of hyperammonemia-induced NAD metabolism by complementary genetic and chemical approaches. Hyperammonemia inhibited electron transport chain components, specifically complex I that oxidizes NADH to NAD+ , that resulted in lower redox ratio. Ammonia also caused mitochondrial oxidative dysfunction, lower mitochondrial NAD+ -sensor Sirt3, protein hyperacetylation, and postmitotic senescence. Mitochondrial-targeted Lactobacillus brevis NADH oxidase (MitoLbNOX), but not NAD+ precursor nicotinamide riboside, reversed ammonia-induced oxidative dysfunction, electron transport chain supercomplex disassembly, lower ATP and NAD+ content, protein hyperacetylation, Sirt3 dysfunction and postmitotic senescence in myotubes. Even though Sirt3 overexpression reversed ammonia-induced hyperacetylation, lower redox status or mitochondrial oxidative dysfunction were not reversed. These data show that acetylation is a consequence of, but is not the mechanism of, lower redox status or oxidative dysfunction during hyperammonemia. Targeting NADH oxidation is a potential approach to reverse and potentially prevent ammonia-induced postmitotic senescence in skeletal muscle. Since dysregulated ammonia metabolism occurs with aging, and NAD+ biosynthesis is reduced in sarcopenia, our studies provide a biochemical basis for cellular senescence and have relevance in multiple tissues.


Assuntos
Hiperamonemia , Sirtuína 3 , Sirtuínas , Humanos , Camundongos , Animais , Sirtuínas/metabolismo , Sirtuína 3/metabolismo , Hiperamonemia/metabolismo , Amônia/metabolismo , NAD/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Acetilação
19.
J Biol Chem ; 286(41): 35989-35997, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21856753

RESUMO

Chronic, heavy alcohol exposure results in inflammation in adipose tissue, insulin resistance, and liver injury. Here we have identified a CYP2E1/Bid/C1q-dependent pathway that is activated in response to chronic ethanol and is required for the development of inflammation in adipose tissue. Ethanol feeding for 25 days to wild-type (C57BL/6J) mice increased expression of multiple markers of adipose tissue inflammation relative to pair-fed controls independent of increased body weight or adipocyte size. Ethanol feeding increased the expression of CYP2E1 in adipocytes, but not stromal vascular cells, in adipose tissue and Cyp2e1(-/-) mice were protected from adipose tissue inflammation in response to ethanol. Ethanol feeding also increased the number of TUNEL-positive nuclei in adipose tissue of wild-type mice but not in Cyp2e1(-/-) or Bid (-/-) mice. Apoptosis contributed to adipose inflammation, as the expression of multiple inflammatory markers was decreased in mice lacking the Bid-dependent apoptotic pathway. The complement protein C1q binds to apoptotic cells, facilitating their clearance and activating complement. Making use of C1q-deficient mice, we found that activation of complement via C1q provided the critical link between CYP2E1/Bid-dependent apoptosis and onset of adipose tissue inflammation in response to chronic ethanol. In summary, chronic ethanol increases CYP2E1 activity in adipose, leading to Bid-mediated apoptosis and activation of complement via C1q, finally resulting in adipose tissue inflammation. Taken together, these data identify a novel mechanism for the development of adipose tissue inflammation that likely contributes to the pathophysiological effects of ethanol.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Depressores do Sistema Nervoso Central/efeitos adversos , Complemento C1q/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Etanol/efeitos adversos , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Depressores do Sistema Nervoso Central/farmacocinética , Complemento C1q/genética , Citocromo P-450 CYP2E1/genética , Etanol/farmacologia , Feminino , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Knockout
20.
Alcohol Clin Exp Res ; 36(7): 1139-47, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22273278

RESUMO

BACKGROUND: Correlative evidence indicates that apoptosis is associated with the progression of alcoholic liver disease. If apoptosis contributes to ethanol (EtOH)-induced steatohepatitis and/or fibrosis, then mice deficient in Bid, a key pro-apoptotic Bcl-2 family member, or mice treated with a pan-caspase inhibitor (VX166) should be resistant to EtOH-induced liver injury. METHODS: This hypothesis was tested in mice using a model of chronic, heavy EtOH-induced liver injury, as well as in a model in which moderate EtOH feeding accelerated the appearance of early markers of hepatic fibrosis in response to acute carbon tetrachloride (CCl(4) ) exposure. RESULTS: Chronic EtOH feeding to mice increased TUNEL- and cytokeratin-18-positive cells in the liver, as well as the expression of receptor-interacting protein kinase 3 (RIP3), a marker of necroptosis. In this model, Bid-/- mice or wild-type mice treated with VX166 were protected from EtOH-induced apoptosis, but not EtOH-induced RIP3 expression. Bid deficiency or inhibition of caspase activity did not protect mice from EtOH-induced increases in plasma alanine and aspartate amino transferase activity, steatosis, or mRNA expression of some inflammatory cytokines. Moderate EtOH feeding to mice enhanced the response of mice to acute CCl(4) exposure, resulting in increased expression of α-smooth muscle actin and accumulation of extracellular matrix protein. VX166-treatment attenuated EtOH-mediated acceleration of these early indicators of CCl(4) -induced hepatic fibrosis, decreasing the expression of α-smooth muscle actin, and the accumulation of extracellular matrix protein. CONCLUSIONS: EtOH-induced apoptosis of hepatocytes was mediated by Bid. Apoptosis played a critical role in the accelerating the appearance of early markers of CCl(4) -induced fibrosis by moderate EtOH but did not contribute to EtOH-induced hepatocyte injury, steatosis, or expression of mRNA for some inflammatory cytokines.


Assuntos
Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/deficiência , Tetracloreto de Carbono/toxicidade , Etanol/toxicidade , Fígado Gorduroso Alcoólico/patologia , Mediadores da Inflamação/toxicidade , Hepatopatias Alcoólicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/prevenção & controle , Feminino , Hepatite Alcoólica/metabolismo , Hepatite Alcoólica/patologia , Hepatite Alcoólica/prevenção & controle , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Cirrose Hepática Alcoólica/metabolismo , Cirrose Hepática Alcoólica/patologia , Cirrose Hepática Alcoólica/prevenção & controle , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa