RESUMO
PURPOSE: We aimed to generate and characterize a novel cell line from a breast cancer bone metastasis to better study the progression of the disease. METHODS: The cell line, P7731, was derived from a metastatic bone lesion of a breast cancer patient and assessed for marker expression. P7731 was analyzed for DNA copy number variation, somatic mutations, and gene expression and was compared with the primary tumor. RESULTS: P7731 cells are negative for estrogen receptor alpha (ERα), progesterone receptor (PR), and HER2 (triple-negative); strongly express vimentin (100% of cells positive) and also express cytokeratins 8/18 and 19 but at lower frequencies. Flow cytometry indicates P7731 cells are predominantly CD44+/CD49f+/EpCAM-, consistent with a primitive, mesenchymal-like phenotype. The cell line is tumorigenic in immunocompromised mice. Exome sequencing identified a total of 45 and 76 somatic mutations in the primary tumor and cell line, respectively, of which 32 were identified in both samples and included mutations in known driver genes PIK3CA, TP53, and ARID1A. P7731 retains the DNA copy number alterations present in the matching primary tumor. Homozygous deletions detected in the cell line and in the primary tumor were found in regions containing three known (CDKN2A, CDKN2B, and CDKN1B) and 23 putative tumor suppressor genes. Cell line-specific gene amplification coupled with mRNA expression analysis revealed genes and pathways with potential pro-metastatic functions. CONCLUSION: This novel human breast cancer-bone metastasis cell line will be a useful model to study aspects of breast cancer biology, particularly metastasis-related changes from breast to bone.
Assuntos
Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proteínas de Neoplasias/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Mama/patologia , Variações do Número de Cópias de DNA/genética , Exoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Mutação , Neoplasias de Mama Triplo Negativas/genéticaRESUMO
PURPOSE: Cell lines are extremely useful tools in breast cancer research. Their key benefits include a high degree of control over experimental variables and reproducibility. However, the advantages must be balanced against the limitations of modelling such a complex disease in vitro. Informed selection of cell line(s) for a given experiment now requires essential knowledge about molecular and phenotypic context in the culture dish. METHODS: We performed multidimensional profiling of 36 widely used breast cancer cell lines that were cultured under standardised conditions. Flow cytometry and digital immunohistochemistry were used to compare the expression of 14 classical breast cancer biomarkers related to intrinsic molecular profiles and differentiation states: EpCAM, CD24, CD49f, CD44, ER, AR, HER2, EGFR, E-cadherin, p53, vimentin, and cytokeratins 5, 8/18 and 19. RESULTS: This cell-by-cell analysis revealed striking heterogeneity within cultures of individual lines that would be otherwise obscured by analysing cell homogenates, particularly amongst the triple-negative lines. High levels of p53 protein, but not RNA, were associated with somatic mutations (p = 0.008). We also identified new subgroups using the nanoString PanCancer Pathways panel (730 transcripts representing 13 canonical cancer pathways). Unsupervised clustering identified five groups: luminal/HER2, immortalised ('normal'), claudin-low and two basal clusters, distinguished mostly by baseline expression of TGF-beta and PI3-kinase pathway genes. CONCLUSION: These features are compared with other published genotype and phenotype information in a user-friendly reference table to help guide selection of the most appropriate models for in vitro and in vivo studies, and as a framework for classifying new patient-derived cancer cell lines and xenografts.
Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Heterogeneidade Genética , Proteínas de Neoplasias/genética , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Genótipo , Humanos , FenótipoRESUMO
Inhibitory molecules of the B7/CD28 family play a key role in the induction of immune tolerance in the tumor microenvironment. The programmed death-1 receptor (PD-1), with its ligands PD-L1 and PD-L2, constitutes an important member of these inhibitory pathways. The relevance of the PD-1/PD-L1 pathway in cancer has been extensively studied and therapeutic approaches targeting PD-1 and PD-L1 have been developed and are undergoing human clinical testing. However, PD-L2 has not received as much attention and its role in modulating tumor immunity is less clear. Here, we review the literature on the immunobiology of PD-L2, particularly on its possible roles in cancer-induced immune suppression and we discuss the results of recent studies targeting PD-L2 in cancer.
Assuntos
Terapia de Imunossupressão , Neoplasias/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/imunologia , Animais , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Humanos , Camundongos , Terapia de Alvo Molecular/tendências , Neoplasias/tratamento farmacológico , Evasão Tumoral , Microambiente TumoralRESUMO
Programmed cell death-ligand 2 (PD-L2) is one of the two ligands of the programmed cell death-1 (PD-1) receptor, an inhibitory protein mainly expressed on activated immune cells that is targeted in the clinic, with successful and remarkable results. The PD-1/PD-Ls axis was shown to be one of the most relevant immunosuppressive pathways in the immune microenvironment, and blocking this interaction gave rise to an impressive clinical benefit in a broad variety of solid and hematological malignancies. Although PD-L2 has been historically considered a minor ligand, it binds to PD-1 with a two- to six-fold higher affinity as compared to PD-L1. PD-L2 can be expressed by immune, stromal, or tumor cells. The aims of this narrative review are to summarize PD-L2 biology in the physiological responses of the immune system and its role, expression, and clinical significance in cancer.
RESUMO
The breast cancer risk variants identified in genome-wide association studies explain only a small fraction of the familial relative risk, and the genes responsible for these associations remain largely unknown. To identify novel risk loci and likely causal genes, we performed a transcriptome-wide association study evaluating associations of genetically predicted gene expression with breast cancer risk in 122,977 cases and 105,974 controls of European ancestry. We used data from the Genotype-Tissue Expression Project to establish genetic models to predict gene expression in breast tissue and evaluated model performance using data from The Cancer Genome Atlas. Of the 8,597 genes evaluated, significant associations were identified for 48 at a Bonferroni-corrected threshold of P < 5.82 × 10-6, including 14 genes at loci not yet reported for breast cancer. We silenced 13 genes and showed an effect for 11 on cell proliferation and/or colony-forming efficiency. Our study provides new insights into breast cancer genetics and biology.
Assuntos
Neoplasias da Mama/genética , Estudos de Casos e Controles , Feminino , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Risco , TranscriptomaRESUMO
The MEK5-ERK5 pathway is a mammalian mitogen-activated protein (MAP) kinase cascade that is not well studied compared to other MAP kinase cascades. Two independent studies by Al-Ejeh et al. and Ortiz-Ruiz et al. published in Oncotarget last year concluded that ERK5 is an attractive target in triple negative breast cancer. In this perspective, we briefly describe the findings of these studies and propose the use of pharmacological inhibition of ERK5 in combination with chemotherapy against triple negative breast cancer because MEK5-ERK5 overexpression associates with poor survival of patients treated with chemotherapy.
RESUMO
Cancer immunotherapy has shown impressive results, but most patients do not respond. We hypothesized that the effector response in the tumour could be visualized as a complex network of interacting gene products and that by mapping this network we could predict effective pharmacological interventions. Here, we provide proof of concept for the validity of this approach in a murine mesothelioma model, which displays a dichotomous response to anti-CTLA4 immune checkpoint blockade. Network analysis of gene expression profiling data from responding versus non-responding tumours was employed to identify modules associated with response. Targeting the modules via selective modulation of hub genes or alternatively by using repurposed pharmaceuticals selected on the basis of their expression perturbation signatures dramatically enhanced the efficacy of CTLA4 blockade in this model. Our approach provides a powerful platform to repurpose drugs, and define contextually relevant novel therapeutic targets.
Assuntos
Antineoplásicos/uso terapêutico , Redes Reguladoras de Genes , Imunoterapia , Mesotelioma/tratamento farmacológico , Mesotelioma/imunologia , Animais , Antineoplásicos/farmacologia , Antígeno CTLA-4/imunologia , Combinação de Medicamentos , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Mesotelioma/genética , Camundongos Endogâmicos BALB C , Indução de RemissãoRESUMO
Several chemotherapeutics exert immunomodulatory effects. One of these is the nucleoside analogue gemcitabine, which is widely used in patients with lung cancer, ovarian cancer, breast cancer, mesothelioma and several other types of cancer, but with limited efficacy. We hypothesized that the immunopotentiating effects of this drug are partly restrained by the inhibitory T cell molecule CTLA-4 and thus could be augmented by combining it with a blocking antibody against CTLA-4, which on its own has recently shown beneficial clinical effects in the treatment of patients with metastatic melanoma. Here we show, using two non-immunogenic murine tumor models, that treatment with gemcitabine chemotherapy in combination with CTLA-4 blockade results in the induction of a potent anti-tumor immune response. Depletion experiments demonstrated that both CD4(+) and CD8(+) T cells are required for optimal therapeutic effect. Mice treated with the combination exhibited tumor regression and long-term protective immunity. In addition, we show that the efficacy of the combination is moderated by the timing of administration of the two agents. Our results show that immune checkpoint blockade and cytotoxic chemotherapy can have a synergistic effect in the treatment of cancer. These results provide a basis to pursue combination therapies with anti-CTLA-4 and immunopotentiating chemotherapy and have important implications for future studies in cancer patients. Since both drugs are approved for use in patients our data can be immediately translated into clinical trials.