Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Struct Dyn ; 11(2): 024305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38566810

RESUMO

We report on the first detailed beam tests attesting the fundamental principle behind the development of high-current-efficiency ultrafast electron microscope systems where a radio frequency (RF) cavity is incorporated as a condenser lens in the beam delivery system. To allow for the experiment to be carried out with a sufficient resolution to probe the performance at the emittance floor, a new cascade loop RF controller system is developed to reduce the RF noise floor. Temporal resolution at 50 fs in full-width-at-half-maximum and detection sensitivity better than 1% are demonstrated on exfoliated 1T-TaSe2 system under a moderate repetition rate. To benchmark the performance, multi-terahertz edge-mode coherent phonon excitation is employed as the standard candle. The high temporal resolution and the significant visibility to very low dynamical contrast in diffraction signals via high-precision phase-space manipulation give strong support to the working principle for the new high-brightness femtosecond electron microscope systems.

2.
Phys Rev Lett ; 109(16): 166406, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215102

RESUMO

Using optical, TEM, and ultrafast electron diffraction experiments we find that single crystal VO(2) microbeams gently placed on insulating substrates or metal grids exhibit different behaviors, with structural and metal-insulator transitions occurring at the same temperature for insulating substrates, while for metal substrates a new monoclinic metal phase lies between the insulating monoclinic phase and the metallic rutile phase. The structural and electronic phase transitions in these experiments are strongly first order and we discuss their origins in the context of current understanding of multiorbital splitting, strong correlation effects, and structural distortions that act cooperatively in this system.

3.
Nat Commun ; 12(1): 566, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495452

RESUMO

Nonequilibrium phase transitions play a pivotal role in broad physical contexts, from condensed matter to cosmology. Tracking the formation of nonequilibrium phases in condensed matter requires a resolution of the long-range cooperativity on ultra-short timescales. Here, we study the spontaneous transformation of a charge-density wave in CeTe3 from a stripe order into a bi-directional state inaccessible thermodynamically but is induced by intense laser pulses. With ≈100 fs resolution coherent electron diffraction, we capture the entire course of this transformation and show self-organization that defines a nonthermal critical point, unveiling the nonequilibrium energy landscape. We discuss the generation of instabilities by a swift interaction quench that changes the system symmetry preference, and the phase ordering dynamics orchestrated over a nonadiabatic timescale to allow new order parameter fluctuations to gain long-range correlations. Remarkably, the subsequent thermalization locks the remnants of the transient order into longer-lived topological defects for more than 2 ns.

4.
Phys Rev Lett ; 104(12): 123401, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366529

RESUMO

We report an ultrafast electron diffraction study of silver nanocrystals under surface plasmon resonance excitation, leading to a concerted fragmentation. By examining simultaneously transient structural, thermal, and Coulombic signatures of the prefragmented state, an electronically driven nonthermal fragmentation scenario is proposed.

5.
Struct Dyn ; 7(6): 064301, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33415182

RESUMO

A femtosecond plasma imaging modality based on a new development of ultrafast electron microscope is introduced. We investigated the laser-induced formation of high-temperature electron microplasmas and their subsequent non-equilibrium evolution. Based on a straightforward field imaging principle, we directly retrieve detailed information about the plasma dynamics, including plasma wave structures, particle densities, and temperatures. We discover that directly subjected to a strong magnetic field, the photo-generated microplasmas manifest in novel transient cyclotron echoes and form new wave states across a broad range of field strengths and different laser fluences. Intriguingly, the transient cyclotron waves morph into a higher frequency upper-hybrid wave mode with the dephasing of local cyclotron dynamics. The quantitative real-space characterizations of the non-equilibrium plasma systems demonstrate the feasibilities of a new microscope system in studying the plasma dynamics or transient electric fields with high spatiotemporal resolutions.

6.
Microsc Microanal ; 15(4): 323-37, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19575833

RESUMO

We review the development of ultrafast electron nanocrystallography as a method for investigating structural dynamics for nanoscale materials and interfaces. Its sensitivity and resolution are demonstrated in the studies of surface melting of gold nanocrystals, nonequilibrium transformation of graphite into reversible diamond-like intermediates, and molecular scale charge dynamics, showing a versatility for not only determining the structures, but also the charge and energy redistribution at interfaces. A quantitative scheme for 3D retrieval of atomic structures is demonstrated with few-particle (<1,000) sensitivity, establishing this nanocrystallographic method as a tool for directly visualizing dynamics within isolated nanomaterials with atomic scale spatio-temporal resolution.

7.
Sci Rep ; 6: 38514, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27982066

RESUMO

Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.

8.
Sci Adv ; 1(5): e1400173, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26601190

RESUMO

Characterizing and understanding the emergence of multiple macroscopically ordered electronic phases through subtle tuning of temperature, pressure, and chemical doping has been a long-standing central issue for complex materials research. We report the first comprehensive studies of optical doping-induced emergence of stable phases and metastable hidden phases visualized in situ by femtosecond electron crystallography. The electronic phase transitions are triggered by femtosecond infrared pulses, and a temperature-optical density phase diagram is constructed and substantiated with the dynamics of metastable states, highlighting the cooperation and competition through which the macroscopic quantum orders emerge. These results elucidate key pathways of femtosecond electronic switching phenomena and provide an important new avenue to comprehensively investigate optical doping-induced transition states and phase diagrams of complex materials with wide-ranging applications.

9.
Science ; 354(6310): 283-284, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27846515
11.
Phys Rev Lett ; 101(7): 077401, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18764578

RESUMO

We use ultrafast electron crystallography to study structural changes induced in graphite by a femtosecond laser pulse. At moderate fluences of < or =21 mJ/cm2, lattice vibrations are observed to thermalize on a time scale of approximately 8 ps. At higher fluences approaching the damage threshold, lattice vibration amplitudes saturate. Following a marked initial contraction, graphite is driven nonthermally into a transient state with sp3-like character, forming interlayer bonds. Using ab initio density functional calculations, we trace the governing mechanism back to electronic structure changes following the photoexcitation.

12.
Nano Lett ; 7(5): 1290-6, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17397235

RESUMO

We report the studies of ultrafast electron nanocrystallography on size-selected Au nanoparticles (2-20 nm) supported on a molecular interface. Reversible surface melting, melting, and recrystallization were investigated with dynamical full-profile radial distribution functions determined with subpicosecond and picometer accuracies. In an ultrafast photoinduced melting, the nanoparticles are driven to a nonequilibrium transformation, characterized by the initial lattice deformations, nonequilibrium electron-phonon coupling, and, upon melting, the collective bonding and debonding, transforming nanocrystals into shelled nanoliquids. The displasive structural excitation at premelting and the coherent transformation with crystal/liquid coexistence during photomelting differ from the reciprocal behavior of recrystallization, where a hot lattice forms from liquid and then thermally contracts. The degree of structural change and the thermodynamics of melting are found to depend on the size of nanoparticle.

13.
J Am Chem Soc ; 126(40): 12797-9, 2004 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-15469274

RESUMO

In this communication, we report our first study of self-assembled adsorbates on metal surfaces. Specifically, we studied single-crystal clean surfaces of Au(111) with and without a monolayer of reaction involving the assembly of 2-mercaptoacetic acid from 2,2'-dithiodiacetic acid. We also studied monolayers of iron hemes. With ultrafast electron crystallography, we are able to observe and isolate structural dynamics of the substrate (gold) and adsorbate(s) following an ultrafast temperature jump.

14.
Science ; 304(5667): 80-4, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-15064414

RESUMO

We report direct determination of the structures and dynamics of interfacial water on a hydrophilic surface with atomic-scale resolution using ultrafast electron crystallography. On the nanometer scale, we observed the coexistence of ordered surface water and crystallite-like ice structures, evident in the superposition of Bragg spots and Debye-Scherrer rings. The structures were determined to be dominantly cubic, but each undergoes different dynamics after the ultrafast substrate temperature jump. From changes in local bond distances (OH.O and O.O) with time, we elucidated the structural changes in the far-from-equilibrium regime at short times and near-equilibration at long times.

15.
Proc Natl Acad Sci U S A ; 101(5): 1123-8, 2004 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-14745037

RESUMO

The static structure of macromolecular assemblies can be mapped out with atomic-scale resolution by using electron diffraction and microscopy of crystals. For transient nonequilibrium structures, which are critical to the understanding of dynamics and mechanisms, both spatial and temporal resolutions are required; the shortest scales of length (0.1-1 nm) and time (10(-13) to 10(-12) s) represent the quantum limit, the nonstatistical regime of rates. Here, we report the development of ultrafast electron crystallography for direct determination of structures with submonolayer sensitivity. In these experiments, we use crystalline silicon as a template for different adsorbates: hydrogen, chlorine, and trifluoroiodomethane. We observe the coherent restructuring of the surface layers with subangstrom displacement of atoms after the ultrafast heat impulse. This nonequilibrium dynamics, which is monitored in steps of 2 ps (total change

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa