Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(8): e1011596, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37603565

RESUMO

SARS-CoV-2 (CoV2) infected, asymptomatic individuals are an important contributor to COVID transmission. CoV2-specific immunoglobulin (Ig)-as generated by the immune system following infection or vaccination-has helped limit CoV2 transmission from asymptomatic individuals to susceptible populations (e.g. elderly). Here, we describe the relationships between COVID incidence and CoV2 lineage, viral load, saliva Ig levels (CoV2-specific IgM, IgA and IgG), and ACE2 binding inhibition capacity in asymptomatic individuals between January 2021 and May 2022. These data were generated as part of a large university COVID monitoring program in Ohio, United States of America, and demonstrate that COVID incidence among asymptomatic individuals occurred in waves which mirrored those in surrounding regions, with saliva CoV2 viral loads becoming progressively higher in our community until vaccine mandates were established. Among the unvaccinated, infection with each CoV2 lineage (pre-Omicron) resulted in saliva Spike-specific IgM, IgA, and IgG responses, the latter increasing significantly post-infection and being more pronounced than N-specific IgG responses. Vaccination resulted in significantly higher Spike-specific IgG levels compared to unvaccinated infected individuals, and uninfected vaccinees' saliva was more capable of inhibiting Spike function. Vaccinees with breakthrough Delta infections had Spike-specific IgG levels comparable to those of uninfected vaccinees; however, their ability to inhibit Spike binding was diminished. These data are consistent with COVID vaccines having achieved hoped-for effects in our community, including the generation of mucosal antibodies that inhibit Spike and lower community viral loads, and suggest breakthrough Delta infections were not due to an absence of vaccine-elicited Ig, but instead limited Spike binding activity in the face of high community viral loads.


Assuntos
Formação de Anticorpos , COVID-19 , Idoso , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Saliva , Universidades , Infecções Irruptivas , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M
2.
PLoS Pathog ; 18(3): e1010093, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35325013

RESUMO

Mycobacterium tuberculosis (Mtb) and SARS-CoV-2 (CoV2) are the leading causes of death due to infectious disease. Although Mtb and CoV2 both cause serious and sometimes fatal respiratory infections, the effect of Mtb infection and its associated immune response on secondary infection with CoV2 is unknown. To address this question we applied two mouse models of COVID19, using mice which were chronically infected with Mtb. In both model systems, Mtb-infected mice were resistant to the pathological consequences of secondary CoV2 infection, and CoV2 infection did not affect Mtb burdens. Single cell RNA sequencing of coinfected and monoinfected lungs demonstrated the resistance of Mtb-infected mice is associated with expansion of T and B cell subsets upon viral challenge. Collectively, these data demonstrate that Mtb infection conditions the lung environment in a manner that is not conducive to CoV2 survival.


Assuntos
COVID-19 , Coinfecção , Mycobacterium tuberculosis , Doença Aguda , Animais , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2
3.
J Biol Chem ; 296: 100084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33199365

RESUMO

The poor and nonselective penetration of current chemotherapeutics across the plasma membranes of cancer cells, which is necessary for the targeted disruption of the intracellular machinery, remains a major pharmaceutical challenge. In several cell types, including mast cells and macrophages, exposure to extracellular ATP is known to stimulate passive entry of large and otherwise membrane impermeable cationic dyes, which is usually attributed to conduction through ionotropic P2X receptors. Here, we report that elevations in cytosolic Ca2+ stimulate the rapid uptake and nuclear accumulation of a DNA-binding fluorescent cation, Hoechst 33258 (H33258), in cervical cancer cells. The H33258 uptake was dependent on activation of intermediate conductance Ca2+-activated K+ channels (KCa3.1), and direct stimulation of the channel with the activators SKA 31 and DCEBIO was sufficient to induce cellular uptake of H33258 directly. In contrast to the results from cancerous cervical cells, KCa3.1-dependent H33258 uptake was rarely observed in epithelial cells derived from the ectocervix and transformation zone of healthy cervical tissue. Furthermore, whole-cell patch clamp experiments and assessment of membrane potential using the slow voltage-sensitive dye bis-(1,3-diethylthiobarbituric acid)trimethine oxonol revealed a significant difference in functional KCa3.1 activity between cancerous and healthy cervical epithelial cells, which correlated strongly with the incidence of KCa3.1-dependent H33258 uptake. Finally, we show that activation of KCa3.1 channels caused a modest but significant sensitization of cancer cells to the growth suppressant effects of H33258, lending plausibility to the idea of using KCa3.1 channel activators to enhance cell penetration of small cationic toxins into cancer cells expressing these channels.


Assuntos
Benzimidazóis , Citotoxinas , DNA de Neoplasias/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias do Colo do Útero/metabolismo , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Transporte Biológico Ativo , Linhagem Celular Tumoral , Citotoxinas/farmacocinética , Citotoxinas/farmacologia , Feminino , Humanos , Neoplasias do Colo do Útero/patologia
4.
Transl Res ; 240: 1-16, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34740873

RESUMO

The acute respiratory distress syndrome (ARDS) is a common complication of severe COVID-19 (coronavirus disease 2019) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection. Knowledge of molecular mechanisms driving host responses to SARS-CoV-2 is limited by the lack of reliable preclinical models of COVID-19 that recapitulate human illness. Further, existing COVID-19 animal models are not characterized as models of experimental acute lung injury (ALI) or ARDS. Acknowledging differences in experimental lung injury in animal models and human ARDS, here we systematically evaluate a model of experimental acute lung injury as a result of SARS-CoV-2 infection in Syrian golden hamsters. Following intranasal inoculation, hamsters demonstrate acute SARS-CoV-2 infection, viral pneumonia, and systemic illness but survive infection with clearance of virus. Hamsters exposed to SARS-CoV-2 exhibited key features of experimental ALI, including histologic evidence of lung injury, increased pulmonary permeability, acute inflammation, and hypoxemia. RNA sequencing of lungs indicated upregulation of inflammatory mediators that persisted after infection clearance. Lipidomic analysis demonstrated significant differences in hamster phospholipidome with SARS-CoV-2 infection. Lungs infected with SARS-CoV-2 showed increased apoptosis and ferroptosis. Thus, SARS-CoV-2 infected hamsters exhibit key features of experimental lung injury supporting their use as a preclinical model of COVID-19 ARDS.


Assuntos
COVID-19/patologia , Modelos Animais de Doenças , Pulmão/patologia , Pneumonia Viral/patologia , SARS-CoV-2/patogenicidade , Animais , COVID-19/virologia , Cricetinae , Masculino , Mesocricetus , Pneumonia Viral/virologia , SARS-CoV-2/isolamento & purificação
5.
bioRxiv ; 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34790981

RESUMO

Mycobacterium tuberculosis (Mtb) and SARS-CoV-2 (CoV2) are the leading causes of death due to infectious disease. Although Mtb and CoV2 both cause serious and sometimes fatal respiratory infections, the effect of Mtb infection and its associated immune response on secondary infection with CoV2 is unknown. To address this question we applied two mouse models of COVID19, using mice which were chronically infected with Mtb. In both model systems, Mtb-infected mice were resistant to secondary CoV2 infection and its pathological consequences, and CoV2 infection did not affect Mtb burdens. Single cell RNA sequencing of coinfected and monoinfected lungs demonstrated the resistance of Mtb-infected mice is associated with expansion of T and B cell subsets upon viral challenge. Collectively, these data demonstrate that Mtb infection conditions the lung environment in a manner that is not conducive to CoV2 survival. AUTHOR SUMMARY: Mycobacterium tuberculosis (Mtb) and SARS-CoV-2 (CoV2) are distinct organisms which both cause lung disease. We report the surprising observation that Mtb-infected mice are resistant to secondary infection with CoV2, with no impact on Mtb burden and resistance associating with lung T and B cell expansion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa