Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 6): 1149-1155, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850561

RESUMO

The unique diffraction geometry of ESRF beamline ID06-LVP offers continuous static 2D or azimuthally resolving data collections over all accessible solid angles available to the tooling geometry. The system is built around a rotating custom-built Pilatus3 CdTe 900k-W detector from Dectris, in a configuration equivalent to three butted 300k devices. As a non-standard geometry, here the method of alignment, correction and subsequent integration for any data collected over all solid angles accessible, or over any azimuthal range contained therein, are provided and illustrated by parameterizing and extending existing pyFAI routines. At 1° integrated intervals, and typical distances (2.0 m), the system covers an area of near 2.5 m2 (100 Mpx square equivalent), to 0.65 Šresolution, at 53 keV from a total dataset of some 312 Mpx. Standard FWHMs of SRM660a LaB6 vary from 0.005° to 0.01°, depending on beam size, energy and sample dimensions, and are sampled at an elevated rate. The azimuthal range per static frame ranges from <20° to ∼1° over the full range of the detector surface. A full 2θ-intensity data collection at static azimuth takes 1-3 s typically, and can be reduced to ms-1 rates for measurements requiring time-rate determination. A full solid-angle collection can be completed in a minute. Sample detector distances are accessible from 1.6 m to 4.0 m.

2.
J Synchrotron Radiat ; 30(Pt 5): 1003-1012, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462688

RESUMO

Following Phase 2 of the upgrade of the ESRF in which the storage ring was replaced by a new low-emittance ring along with many other facility upgrades, the status of ID22, the high-resolution powder-diffraction beamline, is described. The beamline has an in-vacuum undulator as source providing X-rays in the range 6-75 keV. ID22's principle characteristics include very high angular resolution as a result of the highly collimated and monochromatic beam, coupled with a 13-channel Si 111 multi-analyser stage between the sample and a Dectris Eiger2 X 2M-W CdTe pixel detector. The detector's axial resolution allows recorded 2θ values to be automatically corrected for the effects of axial divergence, resulting in narrower and more-symmetric peaks compared with the previous fixed-axial-slit arrangement. The axial acceptance can also be increased with increasing diffraction angle, thus simultaneously improving the statistical quality of high-angle data. A complementary Perkin Elmer XRD1611 medical-imaging detector is available for faster, lower-resolution data, often used at photon energies of 60-70 keV for pair-distribution function analysis, although this is also possible in high-resolution mode by scanning up to 120°â€…2θ at 35 keV. There are various sample environments, allowing sample temperatures from 4 K to 1600°C, a capillary cell for non-corrosive gas atmospheres in the range 0-100 bar, and a sample-changing robot that can accommodate 75 capillary samples compatible with the temperature range 80 K to 950°C.

3.
J Synchrotron Radiat ; 30(Pt 4): 723-738, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37343017

RESUMO

The ability to utilize a hybrid-photon-counting detector to its full potential can significantly influence data quality, data collection speed, as well as development of elaborate data acquisition schemes. This paper facilitates the optimal use of EIGER2 detectors by providing theory and practical advice on (i) the relation between detector design, technical specifications and operating modes, (ii) the use of corrections and calibrations, and (iii) new acquisition features: a double-gating mode, 8-bit readout mode for increasing temporal resolution, and lines region-of-interest readout mode for frame rates up to 98 kHz. Examples of the implementation and application of EIGER2 at several synchrotron sources (ESRF, PETRA III/DESY, ELETTRA, AS/ANSTO) are presented: high accuracy of high-throughput data in serial crystallography using hard X-rays; suppressing higher harmonics of undulator radiation, improving peak shapes, increasing data collection speed in powder X-ray diffraction; faster ptychography scans; and cleaner and faster pump-and-probe experiments.


Assuntos
Fótons , Síncrotrons , Raios X , Radiografia , Difração de Raios X
4.
J Synchrotron Radiat ; 30(Pt 6): 1076-1085, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815374

RESUMO

Microbeam radiation therapy (MRT) is a radiotherapy technique combining spatial fractionation of the dose distribution on a micrometric scale, X-rays in the 50-500 keV range and dose rates up to 16 × 103 Gy s-1. Nowadays, in vivo dosimetry remains a challenge due to the ultra-high radiation fluxes involved and the need for high-spatial-resolution detectors. The aim here was to develop a striped diamond portal detector enabling online microbeam monitoring during synchrotron MRT treatments. The detector, a 550 µm bulk monocrystalline diamond, is an eight-strip device, of height 3 mm, width 178 µm and with 60 µm spaced strips, surrounded by a guard ring. An eight-channel ASIC circuit for charge integration and digitization has been designed and tested. Characterization tests were performed at the ID17 biomedical beamline of the European Synchrotron Radiation Facility (ESRF). The detector measured direct and attenuated microbeams as well as interbeam fluxes with a precision level of 1%. Tests on phantoms (RW3 and anthropomorphic head phantoms) were performed and compared with simulations. Synchrotron radiation measurements were performed on an RW3 phantom for strips facing a microbeam and for strips facing an interbeam area. A 2% difference between experiments and simulations was found. In more complex geometries, a preliminary study showed that the absolute differences between simulated and recorded transmitted beams were within 2%. Obtained results showed the feasibility of performing MRT portal monitoring using a microstriped diamond detector. Online dosimetric measurements are currently ongoing during clinical veterinary trials at ESRF, and the next 153-strip detector prototype, covering the entire irradiation field, is being finalized at our institution.


Assuntos
Radiometria , Síncrotrons , Radiometria/métodos , Fracionamento da Dose de Radiação , Raios X , Imagens de Fantasmas , Radioterapia , Método de Monte Carlo , Diamante
5.
Sensors (Basel) ; 23(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37050510

RESUMO

Pixelated LGADs have been established as the baseline technology for timing detectors for the High Granularity Timing Detector (HGTD) and the Endcap Timing Layer (ETL) of the ATLAS and CMS experiments, respectively. The drawback of segmenting an LGAD is the non-gain area present between pixels and the consequent reduction in the fill factor. To overcome this issue, the inverse LGAD (iLGAD) technology has been proposed by IMB-CNM to enhance the fill factor and provide excellent tracking capabilities. In this work, we explore the use of iLGAD sensors for surface damage irradiation by developing a new generation of iLGADs, the periphery of which is optimized to improve the performance of irradiated sensors. The fabricated iLGAD sensors exhibit good electrical performances before and after X-ray irradiation.

6.
Sensors (Basel) ; 21(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672262

RESUMO

Chromium compensated GaAs or GaAs:Cr sensors provided by the Tomsk State University (Russia) were characterized using the low noise, charge integrating readout chip JUNGFRAU with a pixel pitch of 75 × 75 µm2 regarding its application as an X-ray detector at synchrotrons sources or FELs. Sensor properties such as dark current, resistivity, noise performance, spectral resolution capability and charge transport properties were measured and compared with results from a previous batch of GaAs:Cr sensors which were produced from wafers obtained from a different supplier. The properties of the sample from the later batch of sensors from 2017 show a resistivity of 1.69 × 109 Ω/cm, which is 47% higher compared to the previous batch from 2016. Moreover, its noise performance is 14% lower with a value of (101.65 ± 0.04) e- ENC and the resolution of a monochromatic 60 keV photo peak is significantly improved by 38% to a FWHM of 4.3%. Likely, this is due to improvements in charge collection, lower noise, and more homogeneous effective pixel size. In a previous work, a hole lifetime of 1.4 ns for GaAs:Cr sensors was determined for the sensors of the 2016 sensor batch, explaining the so-called "crater effect" which describes the occurrence of negative signals in the pixels around a pixel with a photon hit due to the missing hole contribution to the overall signal causing an incomplete signal induction. In this publication, the "crater effect" is further elaborated by measuring GaAs:Cr sensors using the sensors from 2017. The hole lifetime of these sensors was 2.5 ns. A focused photon beam was used to illuminate well defined positions along the pixels in order to corroborate the findings from the previous work and to further characterize the consequences of the "crater effect" on the detector operation.

7.
J Synchrotron Radiat ; 26(Pt 5): 1751-1762, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490167

RESUMO

X-ray ptychography is a coherent diffraction imaging technique with a high resolving power and excellent quantitative capabilities. Although very popular in synchrotron facilities nowadays, its implementation with X-ray energies above 15 keV is very rare due to the challenges imposed by the high energies. Here, the implementation of high-energy X-ray ptychography at 17 and 33.6 keV is demonstrated and solutions to overcome the important challenges are provided. Among the particular aspects addressed are the use of an efficient high-energy detector, a long synchrotron beamline for the high degree of spatial coherence, a beam with 1% monochromaticity providing high flux, and efficient multilayer coated Kirkpatrick-Baez X-ray optics to shape the beam. The constraints imposed by the large energy bandwidth are carefully analyzed, as well as the requirements to sample correctly the high-energy diffraction patterns with small speckle size. In this context, optimized scanning trajectories allow the total acquisition time to be reduced by up to 35%. The paper explores these innovative solutions at the ID16A nano-imaging beamline by ptychographic imaging of a 200 nm-thick gold lithography sample.


Assuntos
Óptica e Fotônica/instrumentação , Intensificação de Imagem Radiográfica/instrumentação , Síncrotrons , Desenho de Equipamento , Ouro/química , Modelos Teóricos , Difração de Raios X , Raios X
8.
J Synchrotron Radiat ; 26(Pt 4): 1226-1237, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274448

RESUMO

Recent advances in segmented low-gain avalanche detectors (LGADs) make them promising for the position-sensitive detection of low-energy X-ray photons thanks to their internal gain. LGAD microstrip sensors fabricated by Fondazione Bruno Kessler have been investigated using X-rays with both charge-integrating and single-photon-counting readout chips developed at the Paul Scherrer Institut. In this work it is shown that the charge multiplication occurring in the sensor allows the detection of X-rays with improved signal-to-noise ratio in comparison with standard silicon sensors. The application in the tender X-ray energy range is demonstrated by the detection of the sulfur Kα and Kß lines (2.3 and 2.46 keV) in an energy-dispersive fluorescence spectrometer at the Swiss Light Source. Although further improvements in the segmentation and in the quantum efficiency at low energy are still necessary, this work paves the way for the development of single-photon-counting detectors in the soft X-ray energy range.

9.
Proc Natl Acad Sci U S A ; 113(14): 3751-4, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001841

RESUMO

Writing on paper is essential to civilization, as Pliny the Elder remarks in his Natural History, when he describes the various types of papyri, the method of manufacturing them, and all that concerns writing materials in the mid-first century AD. For this reason, a rigorous scientific study of writing is of fundamental importance for the historical understanding of ancient societies. We show that metallic ink was used several centuries earlier than previously thought. In particular, we found strong evidence that lead was intentionally used in the ink of Herculaneum papyri and discuss the possible existence of ruled lines traced on the papyrus texture. In addition, the metallic concentrations found in these fragments deliver important information in view of optimizing future computed tomography (CT) experiments on still-unrolled Herculaneum scrolls to improve the readability of texts in the only surviving ancient Greco-Roman library.

10.
Phys Med Biol ; 61(24): 8750-8761, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27893445

RESUMO

Since the breast is one of the most radiosensitive organs, mammography is arguably the area where lowering radiation dose is of the uttermost importance. Phase-based x-ray imaging methods can provide opportunities in this sense, since they do not require x-rays to be stopped in tissue for image contrast to be generated. Therefore, x-ray energy can be considerably increased compared to those usually exploited by conventional mammography. In this article we show how a novel, optimized approach can lead to considerable dose reductions. This was achieved by matching the edge-illumination phase method, which reaches very high angular sensitivity also at high x-ray energies, to an appropriate image processing algorithm and to a virtually noise-free detection technology capable of reaching almost 100% efficiency at the same energies. Importantly, while proof-of-concept was obtained at a synchrotron, the method has potential for a translation to conventional sources.


Assuntos
Mamografia/métodos , Doses de Radiação , Algoritmos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Mamografia/instrumentação , Pessoa de Meia-Idade , Razão Sinal-Ruído , Síncrotrons , Raios X
11.
Phys Med Biol ; 59(20): 6195-213, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25255737

RESUMO

Spectroscopic x-ray imaging based on pixellated semiconductor detectors can be sensitive to charge sharing and K-fluorescence, depending on the sensor material used, its thickness and the pixel pitch employed. As a consequence, spectroscopic resolution is partially lost. In this paper, we study a new detector ASIC, the Medipix3RX, that offers a novel feature called charge summing, which is established by making adjacent pixels communicate with each other. Consequently, single photon interactions resulting in multiple hits are almost completely avoided. We investigate this charge summing mode with respect to those of its imaging properties that are of interest in medical physics and benchmark them against the case without charge summing. In particular, we review its influence on spectroscopic resolution and find that the low energy bias normally present when recording energy spectra is dramatically reduced. Furthermore, we show that charge summing provides a modulation transfer function which is almost independent of the energy threshold setting, which is in contrast to approaches common so far. We demonstrate that this property is directly linked to the detective quantum efficiency, which is found to increase by a factor of three or more when the energy threshold approaches the photon energy and when using charge summing. As a consequence, the contrast-to-noise ratio is found to double at elevated threshold levels and the dynamic range increases for a given counter depth. All these effects are shown to lead to an improved ability to perform material discrimination in spectroscopic CT, using iodine and gadolinium contrast agents. Hence, when compared to conventional photon counting detectors, these benefits carry the potential of substantially reducing the imaging dose a patient is exposed to during diagnostic CT examinations.


Assuntos
Espectroscopia Fotoeletrônica/métodos , Fótons , Radiografia/métodos , Espectroscopia Fotoeletrônica/instrumentação , Radiografia/instrumentação , Semicondutores , Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa