Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 20(11): 1481-1493, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31611699

RESUMO

Self-non-self discrimination is central to T cell-mediated immunity. The kinetic proofreading model can explain T cell antigen receptor (TCR) ligand discrimination; however, the rate-limiting steps have not been identified. Here, we show that tyrosine phosphorylation of the T cell adapter protein LAT at position Y132 is a critical kinetic bottleneck for ligand discrimination. LAT phosphorylation at Y132, mediated by the kinase ZAP-70, leads to the recruitment and activation of phospholipase C-γ1 (PLC-γ1), an important effector molecule for T cell activation. The slow phosphorylation of Y132, relative to other phosphosites on LAT, is governed by a preceding glycine residue (G131) but can be accelerated by substituting this glycine with aspartate or glutamate. Acceleration of Y132 phosphorylation increases the speed and magnitude of PLC-γ1 activation and enhances T cell sensitivity to weaker stimuli, including weak agonists and self-peptides. These observations suggest that the slow phosphorylation of Y132 acts as a proofreading step to facilitate T cell ligand discrimination.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ativação Linfocitária , Proteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Feminino , Ligantes , Masculino , Proteínas de Membrana/imunologia , Camundongos , Fosfolipase C gama/metabolismo , Fosforilação/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/metabolismo , Tirosina/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo
2.
Nat Chem Biol ; 15(10): 1001-1008, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548693

RESUMO

Glycolysis plays a central role in producing ATP and biomass. Its control principles, however, remain incompletely understood. Here, we develop a method that combines 2H and 13C tracers to determine glycolytic thermodynamics. Using this method, we show that, in conditions and organisms with relatively slow fluxes, multiple steps in glycolysis are near to equilibrium, reflecting spare enzyme capacity. In Escherichia coli, nitrogen or phosphorus upshift rapidly increases the thermodynamic driving force, deploying the spare enzyme capacity to increase flux. Similarly, respiration inhibition in mammalian cells rapidly increases both glycolytic flux and the thermodynamic driving force. The thermodynamic shift allows flux to increase with only small metabolite concentration changes. Finally, we find that the cellulose-degrading anaerobe Clostridium cellulolyticum exhibits slow, near-equilibrium glycolysis due to the use of pyrophosphate rather than ATP for fructose-bisphosphate production, resulting in enhanced per-glucose ATP yield. Thus, near-equilibrium steps of glycolysis promote both rapid flux adaptation and energy efficiency.


Assuntos
Metabolismo Energético/fisiologia , Glicólise , Animais , Linhagem Celular , Clostridium acetobutylicum , Clostridium cellulolyticum , Escherichia coli/classificação , Escherichia coli/metabolismo , Glucose/metabolismo , Homeostase , Camundongos , Nitrogênio , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
3.
Nat Chem Biol ; 12(7): 482-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27159581

RESUMO

In metabolism, available free energy is limited and must be divided across pathway steps to maintain a negative ΔG throughout. For each reaction, ΔG is log proportional both to a concentration ratio (reaction quotient to equilibrium constant) and to a flux ratio (backward to forward flux). Here we use isotope labeling to measure absolute metabolite concentrations and fluxes in Escherichia coli, yeast and a mammalian cell line. We then integrate this information to obtain a unified set of concentrations and ΔG for each organism. In glycolysis, we find that free energy is partitioned so as to mitigate unproductive backward fluxes associated with ΔG near zero. Across metabolism, we observe that absolute metabolite concentrations and ΔG are substantially conserved and that most substrate (but not inhibitor) concentrations exceed the associated enzyme binding site dissociation constant (Km or Ki). The observed conservation of metabolite concentrations is consistent with an evolutionary drive to utilize enzymes efficiently given thermodynamic and osmotic constraints.


Assuntos
Enzimas/metabolismo , Termodinâmica , Animais , Linhagem Celular , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Camundongos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
4.
J Exp Med ; 219(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35938989

RESUMO

The zebrafish has proven to be a valuable model organism for studying hematopoiesis, but relatively little is known about zebrafish immune cell development and functional diversity. Elucidating key aspects of zebrafish lymphocyte development and exploring the breadth of effector functions would provide valuable insight into the evolution of adaptive immunity. We performed single-cell RNA sequencing on ∼70,000 cells from the zebrafish marrow and thymus to establish a gene expression map of zebrafish immune cell development. We uncovered rich cellular diversity in the juvenile and adult zebrafish thymus, elucidated B- and T-cell developmental trajectories, and transcriptionally characterized subsets of hematopoietic stem and progenitor cells and early thymic progenitors. Our analysis permitted the identification of two dendritic-like cell populations and provided evidence in support of the existence of a pre-B cell state. Our results provide critical insights into the landscape of zebrafish immunology and offer a foundation for cellular and genetic studies.


Assuntos
Células-Tronco Hematopoéticas , Peixe-Zebra , Animais , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Células Precursoras de Linfócitos B , Análise de Célula Única , Timo , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa