Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Small ; 18(8): e2105652, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34897995

RESUMO

The stunning optical properties of upconverting nanoparticles (UCNPs) have inspired promising biomedical technologies. Nevertheless, their transfer to aqueous media is often accompanied by intense luminescence quenching, partial dissolution by water, and even complete degradation by molecules such as phosphates. Currently, these are major issues hampering the translation of UCNPs to the clinic. In this work, a strategy is developed to coat and protect ß-NaYF4 UCNPs against these effects, by growing a hydrophobic polymer shell (HPS) through miniemulsion polymerization of styrene (St), or St and methyl methacrylate mixtures. This allows one to obtain single core@shell UCNPs@HPS with a final diameter of ≈60-70 nm. Stability studies reveal that these HPSs serve as a very effective barrier, impeding polar molecules to affect UCNPs optical properties. Even more, it allows UCNPs to withstand aggressive conditions such as high dilutions (5 µg mL-1 ), high phosphate concentrations (100 mm), and high temperatures (70 °C). The physicochemical characterizations prove the potential of HPSs to overcome the current limitations of UCNPs. This strategy, which can be applied to other nanomaterials with similar limitations, paves the way toward more stable and reliable UCNPs with applications in life sciences.


Assuntos
Nanopartículas , Polímeros , Interações Hidrofóbicas e Hidrofílicas , Luminescência , Nanopartículas/química , Polímeros/química , Água
2.
Bioconjug Chem ; 33(5): 821-828, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35482594

RESUMO

We present a simple methodology to design a pretargeted drug delivery system, based on clickable anti-programmed death ligand 1 (anti-PD-L1) antibodies (Abs) and clickable bovine serum albumin (BSA) nanoparticles (NPs). Pretargeted drug delivery is based on the decoupling of a targeting moiety and a drug-delivering vector which can then react in vivo after separate injections. This may be key to achieve active targeting of drug-delivering NPs toward cancerous tissue. In pretargeted approaches, drug-delivering NPs were observed to accumulate in a higher amount in the targeted tissue due to shielding-related enhanced blood circulation and size-related enhanced tissue penetration. In this work, BSA NPs were produced using the solvent precipitation methodology that renders colloidally stable NPs, which were subsequently functionalized with a clickable moiety based on chlorosydnone (Cl-Syd). Those reactive groups are able to specifically react with dibenzocyclooctyne (DBCO) groups in a click-type fashion, reaching second-order reaction rate constants as high as 1.9 M-1·s-1, which makes this reaction highly suitable for in vivo applications. The presence of reactive Cl-Syd was demonstrated by reacting the functionalized NPs with a DBCO-modified sulfo-cyanine-5 dye. With this reaction, it was possible to infer the number of reactive moieties per NPs. Finally, and with the aim of demonstrating the suitability of this system to be used in pretargeted strategies, functionalized fluorescent NPs were used to label H358 cells with a clickable anti-PD-L1 Ab, applying the reaction between Cl-Syd and DBCO as corresponding clickable groups. The results of these experiments demonstrate the bio-orthogonality of the system to perform the reaction in vitro, in a period as short as 15 min.


Assuntos
Antígeno B7-H1 , Nanopartículas , Neoplasias , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/biossíntese , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia , Terapia de Alvo Molecular , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/química
3.
Bioorg Med Chem ; 69: 116910, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777271

RESUMO

Superparamagnetic iron nanoparticles (SPIONs) have become one of the most useful colloidal systems in nanomedicine. We report here the preparation of new hybrid core@shell systems based on SPION nanoparticles coated with a SiO2 shell (SPION@SiO2) and functionalized with carboxyl groups (SPION@SiO2-COOH). A series of new N-alkylamino- and N-alkylamido-terminated 1-phenyl- tetrahydroisoquinolines (THIQs) and 3-tetrahydrobenzazepines (THBs) derivatives presenting -SMe and -Cl groups, respectively, with potential dopaminergic activity, are synthesized and incorporated to the hybrid system. We include the synthetic details for THIQs and THBs derivatives preparation and investigate the influence of the terminal-functional group as well as the number of carbon atoms linked to THIQ and THB molecules during the coupling to the SPION@SiO2-COOH. Nuclear magnetic resonance (NMR) and electron ionization mass spectrometry (EI-MS) are used to characterize the synthesized THIQs and THBs. High-angle annular dark-field transmission electron microscopy (HAADF-TEM), energy dispersive X-ray transmission electron microscopy (EDX-TEM), and proton high-resolution magic angle spinning NMR spectroscopy1H HRMAS-NMR) are used to confirm the presence of THB and THIQ molecules onto the surface of the nanoparticles. The hybrid SPION@SiO2-THIQ and THB systems show significant activity toward the D2 receptor, reaching Ki values of about 20 nM, thus having potential application in the treatment of central nervous system (CNS) diseases.


Assuntos
Compostos Férricos , Nanopartículas , Benzazepinas/farmacologia , Isoquinolinas/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/química , Dióxido de Silício/química
4.
Small ; 16(29): e1907171, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32548926

RESUMO

Fast and precise localization of ischemic tissues in the myocardium after an acute infarct is required by clinicians as the first step toward accurate and efficient treatment. Nowadays, diagnosis of a heart attack at early times is based on biochemical blood analysis (detection of cardiac enzymes) or by ultrasound-assisted imaging. Alternative approaches are investigated to overcome the limitations of these classical techniques (time-consuming procedures or low spatial resolution). As occurs in many other fields of biomedicine, cardiological preclinical imaging can also benefit from the fast development of nanotechnology. Indeed, bio-functionalized near-infrared-emitting nanoparticles are herein used for in vivo imaging of the heart after an acute myocardial infarct. Taking advantage of the superior acquisition speed of near-infrared fluorescence imaging, and of the efficient selective targeting of the near-infrared-emitting nanoparticles, in vivo images of the infarcted heart are obtained only a few minutes after the acute infarction event. This work opens an avenue toward cost-effective, fast, and accurate in vivo imaging of the ischemic myocardium after an acute infarct.


Assuntos
Infarto do Miocárdio , Nanopartículas , Humanos , Luminescência , Infarto do Miocárdio/diagnóstico por imagem , Miocárdio , Imagem Óptica
5.
AAPS PharmSciTech ; 20(5): 202, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31140015

RESUMO

Florfenicol (FLO) is a broad-spectrum fluorinated antibiotic used for the treatment of bacterial diseases such as bovine respiratory disease (BRD) in cattle. FLO is a poorly soluble drug in aqueous solution, and its encapsulation in various nanovehicles has been reported to be less than 30%. In this context, the use of bovine serum albumin (BSA) as a nanocarrier for FLO is an interesting approach. BSA is a biocompatible, biodegradable, nontoxic, and nonimmunogenic natural protein, allowing the vehiculization of hydrophilic and hydrophobic drugs with a well-tolerated administration. The present work focuses on the fabrication and characterization of florfenicol-loaded BSA (FLO-BSA NPs), incorporation efficiency, and in vitro release pattern. FLO-BSA NPs nanoparticles were successfully obtained by a simple, low-cost and in a few steps method. The physicochemical properties of the obtained nanoparticles such as size (~ 120 nm), polydispersity index (0.04), and zeta potential (approximately - 40 mV) suggest a high colloidal stability and suitable characteristics for drug delivery. The drug loading reveals a high incorporation of florfenicol in the nanoparticles, in which 33.6 molecules of FLO are encapsulated per each molecule of BSA. The in vitro release profile exhibits an initial stage characterized by the burst effect and then a prolonged release of FLO from the albumin matrix, which is compatible with the Higuchi model and which follows a Fickian diffusion. The results together suggest a suitable tool for future investigations in drug delivery field in order to use this nanomaterial in food, pharmaceutical, and veterinary industry.


Assuntos
Antibacterianos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/metabolismo , Soroalbumina Bovina/farmacocinética , Tianfenicol/análogos & derivados , Animais , Antibacterianos/administração & dosagem , Antibacterianos/síntese química , Bovinos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacocinética , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/tendências , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/administração & dosagem , Nanopartículas/química , Tamanho da Partícula , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/síntese química , Tianfenicol/administração & dosagem , Tianfenicol/síntese química , Tianfenicol/farmacocinética
6.
Anal Chem ; 90(22): 13385-13392, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30338988

RESUMO

In this work, we explore a photochemical ligation reaction to covalently modify oligonucleotide-conjugated upconverting nanoparticles (UCNPs) in the presence of a specific target DNA sequence. The target sequence acts as a hybridization template, bringing together a biotinylated photoactivatable oligonucleotide probe and the oligonucleotide probe that is attached to UCNPs. The illumination of the UCNPs by NIR light to generate UV emission internally or illuminating the photoactivatable probe directly by an external UV light promotes the photochemical ligation reaction, yielding covalently biotin functionalized UCNPs that can be selectively captured in streptavidin-coated microwells. Following this strategy, we developed a DNA sensor with a limit of detection of 1 × 10-18 mol per well (20 fM). In addition, we demonstrate the possibility to create UCNP patterns on the surface of solid supports upon NIR illumination that are selectively formed under the presence of the target oligonucleotide.


Assuntos
Sondas de DNA/química , DNA/análise , Fluoretos/química , Nanopartículas/química , Ítrio/química , Resinas Acrílicas/química , Técnicas Biossensoriais/métodos , DNA/genética , Sondas de DNA/genética , Fluoretos/efeitos da radiação , Raios Infravermelhos , Nanopartículas/efeitos da radiação , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Túlio/química , Túlio/efeitos da radiação , Raios Ultravioleta , Itérbio/química , Itérbio/efeitos da radiação , Ítrio/efeitos da radiação
7.
Langmuir ; 30(51): 15560-7, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25437749

RESUMO

In this work, we present a novel method to produce thermoresponsive, monodisperse microgels which display temperature-dependent photoluminescence. The system is based on bimetallic cores of Au@Ag encapsulated within thermoresponsive poly(N-isopropylacrylamide) microgels and coated with a photoluminescent polymer (poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (PTEBS) using the Layer-by-Layer technique. The electromagnetic radiation used to excite the PTEBS induces a local electromagnetic field on the surface of the bimetallic cores that enhances the excitation and emission rates of the PTEBS, yielding a metal enhanced fluorescence (MEF). This effect was studied as a function of the bimetallic core size and the separation distance between the PTEBS and the bimetallic cores. Our results permit evaluation of the effect that the metallic core size of colloidal particles exerts on the MEF for the first time, and prove the relevance of the metallic cores to extend the effect far away from the metallic surface.

8.
Nanoscale ; 16(25): 12184-12195, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38842018

RESUMO

The upconversion luminescence (UCL) lifetime has a wide range of applications, serving as a critical parameter for optimizing the performance of upconversion nanoparticles (UCNPs) in various fields. It is crucial to understand that this lifetime does not directly correlate with the decay time of the emission level; rather, it represents a compilation of all the physical phenomena taking place in the upconversion process. To delve deeper into this, we analyzed the dependence of the UCL lifetime on the excitation pulse width for ß-NaYF4:Yb3+,Er3+ nanoparticles. The results revealed a significant increase in the UCL lifetime with both the excitation pulse width and the excitation intensity. The laser fluence was identified as the parameter governing the UCL decay dynamics. We showcased the universality of the pulse-width-dependent UCL lifetime phenomenon by employing UCNPs of various sizes, surface coatings, host matrices, Yb3+ and Er3+ ratios, and dispersing UCNPs in different solvents. Theoretical explanations for the experimental findings were derived through a rate equation analysis. Finally, we discussed the implications of these results in UCNP-FRET (Förster resonance energy transfer)-based applications.

9.
J Phys Chem Lett ; 15(33): 8420-8426, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39116287

RESUMO

Bright near-infrared-emitting Ag2S nanocrystals (NCs) are used for in vivo temperature sensing relying on a reversible variation in intensity and photoluminescence lifetime within the physiological temperature range. Here, to gain insights into the luminescence and quenching mechanisms, we investigated the temperature-dependent luminescence of Ag2S NCs from 300 to 10 K. Interestingly, both emission and lifetime measurements reveal similar and strong thermal quenching from 200 to 300 K, indicating an intrinsic quenching process that limits the photoluminescence quantum yield at room temperature, even for perfectly passivated NCs. The low thermal quenching temperature, broadband emission, and multiexponential microsecond decay behavior suggest the optical transition involves strong lattice relaxation, which is consistent with the recombination of a Ag+-trapped hole with a delocalized conduction band electron. Our findings offer valuable insights for understanding the optical properties of Ag2S NCs and the thermal quenching mechanism underlying their temperature-sensing capabilities.

10.
Nanoscale ; 15(44): 17956-17962, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37905397

RESUMO

Luminescence nanothermometry allows measuring temperature remotely and in a minimally invasive way by using the luminescence signal provided by nanosized materials. This technology has allowed, for example, the determination of intracellular temperature and in vivo monitoring of thermal processes in animal models. However, in the biomedical context, this sensing technology is crippled by the presence of bias (cross-sensitivity) that reduces the reliability of the thermal readout. Bias occurs when the impact of environmental conditions different from temperature also modifies the luminescence of the nanothermometers. Several sources that cause loss of reliability have been identified, mostly related to spectral distortions due to interaction between photons and biological tissues. In this work, we unveil an unexpected source of bias induced by metal ions. Specifically, we demonstrate that the reliability of Ag2S nanothermometers is compromised during the monitoring of photothermal processes produced by iron oxide nanoparticles. The observed bias occurs due to the heat-induced release of iron ions, which interact with the surface of the Ag2S nanothermometers, enhancing their emission. The results herein reported raise a warning to the community working on luminescence nanothermometry, since they reveal that the possible sources of bias in complex biological environments, rich in molecules and ions, are more numerous than previously expected.


Assuntos
Temperatura Corporal , Luminescência , Animais , Reprodutibilidade dos Testes , Temperatura , Íons
11.
Adv Mater ; 35(33): e2301819, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37352307

RESUMO

In nanothermometry, the use of nanoparticles as thermal probes enables remote and minimally invasive sensing. In the biomedical context, nanothermometry has emerged as a powerful tool where traditional approaches, like infrared thermal sensing and contact thermometers, fall short. Despite the strides of this technology in preclinical settings, nanothermometry is not mature enough to be translated to the bedside. This is due to two major hurdles: the inability to perform 3D thermal imaging and the requirement for tools that are readily available in the clinics. This work simultaneously overcomes both limitations by proposing the technology of optical coherence thermometry (OCTh). This is achieved by combining thermoresponsive polymeric nanogels and optical coherence tomography (OCT)-a 3D imaging technology routinely used in clinical practice. The volume phase transition of the thermoresponsive nanogels causes marked changes in their refractive index, making them temperature-sensitive OCT contrast agents. The ability of OCTh to provide 3D thermal images is demonstrated in tissue phantoms subjected to photothermal processes, and its reliability is corroborated by comparing experimental results with numerical simulations. The results included in this work set credible foundations for the implementation of nanothermometry in the form of OCTh in clinical practice.


Assuntos
Nanopartículas , Termometria , Nanogéis , Reprodutibilidade dos Testes , Termômetros , Polímeros , Tomografia de Coerência Óptica/métodos
12.
ACS Appl Mater Interfaces ; 15(27): 32667-32677, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37390496

RESUMO

Rare-earth doped nanoparticles (RENPs) are attracting increasing interest in materials science due to their optical, magnetic, and chemical properties. RENPs can emit and absorb radiation in the second biological window (NIR-II, 1000-1400 nm) making them ideal optical probes for photoluminescence (PL) in vivo imaging. Their narrow emission bands and long PL lifetimes enable autofluorescence-free multiplexed imaging. Furthermore, the strong temperature dependence of the PL properties of some of these RENPs makes remote thermal imaging possible. This is the case of neodymium and ytterbium co-doped NPs that have been used as thermal reporters for in vivo diagnosis of, for instance, inflammatory processes. However, the lack of knowledge about how the chemical composition and architecture of these NPs influence their thermal sensitivity impedes further optimization. To shed light on this, we have systematically studied their emission intensity, PL decay time curves, absolute PL quantum yield, and thermal sensitivity as a function of the core chemical composition and size, active-shell, and outer-inert-shell thicknesses. The results revealed the crucial contribution of each of these factors in optimizing the NP thermal sensitivity. An optimal active shell thickness of around 2 nm and an outer inert shell of 3.5 nm maximize the PL lifetime and the thermal response of the NPs due to the competition between the temperature-dependent back energy transfer, the surface quenching effects, and the confinement of active ions in a thin layer. These findings pave the way for a rational design of RENPs with optimal thermal sensitivity.

13.
Nanoscale ; 14(43): 16208-16219, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36281691

RESUMO

Optomagnetic nanofluids (OMNFs) are colloidal dispersions of nanoparticles (NPs) with combined magnetic and optical properties. They are especially appealing in biomedicine since they can be used as minimally invasive platforms for controlled hyperthermia treatment of otherwise difficultly accessible tumors such as intracranial ones. On the one hand, magnetic NPs act as heating mediators when subjected to alternating magnetic fields or light irradiation. On the other hand, suitably tailored luminescent NPs can provide a precise and remote thermal readout in real time. The combination of heating and thermometric properties allows, in principle, to precisely monitor the increase in the temperature of brain tumors up to the therapeutic level, without causing undesired collateral damage. In this work we demonstrate that this view is an oversimplification since it ignores the presence of relevant interactions between magnetic (γ-Fe2O3 nanoflowers) and luminescent nanoparticles (Ag2S NPs) that result in a detrimental alteration of their physicochemical properties. The magnitude of such interactions depends on the interparticle distance and on the surface properties of nanoparticles. Experiments performed in mouse brains (phantoms and ex vivo) revealed that OMNFs cannot induce relevant heating under alternating magnetic fields and fail to provide reliable temperature reading. In contrast, we demonstrate that the use of luminescent nanofluids (containing only Ag2S NPs acting as both photothermal agents and nanothermometers) stands out as a better alternative for thermally monitored hyperthermia treatment of brain tumors in small animal models.


Assuntos
Neoplasias Encefálicas , Hipertermia Induzida , Animais , Camundongos , Linhagem Celular Tumoral , Campos Magnéticos , Encéfalo , Neoplasias Encefálicas/terapia
14.
Adv Mater ; 34(7): e2107764, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34826883

RESUMO

Temperature of tissues and organs is one of the first parameters affected by physiological and pathological processes, such as metabolic activity, acute trauma, or infection-induced inflammation. Therefore, the onset and development of these processes can be detected by monitoring deviations from basal temperature. To accomplish this, minimally invasive, reliable, and accurate measurement of the absolute temperature of internal organs is required. Luminescence nanothermometry is the ideal technology for meeting these requirements. Although this technique has lately undergone remarkable developments, its reliability is being questioned due to spectral distortions caused by biological tissues. In this work, how the use of bright Ag2 S nanoparticles featuring temperature-dependent fluorescence lifetime enables reliable and accurate measurement of the absolute temperature of the liver in mice subjected to lipopolysaccharide-induced inflammation is demonstrated. Beyond the remarkable thermal sensitivity (≈ 3% °C-1 around 37 °C) and thermal resolution obtained (smaller than 0.3 °C), the results included in this work set a blueprint for the development of new diagnostic procedures based on the use of intracorporeal temperature as a physiological indicator.


Assuntos
Fígado , Luminescência , Animais , Inflamação/diagnóstico , Camundongos , Reprodutibilidade dos Testes , Temperatura
15.
ACS Appl Mater Interfaces ; 14(4): 4871-4881, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35049282

RESUMO

Ag2S nanoparticles are the staple for high-resolution preclinical imaging and sensing owing to their photochemical stability, low toxicity, and photoluminescence (PL) in the second near-infrared biological window. Unfortunately, Ag2S nanoparticles exhibit a low PL efficiency attributed to their defective surface chemistry, which curbs their translation into the clinics. To address this shortcoming, we present a simple methodology that allows to improve the PL quantum yield from 2 to 10%, which is accompanied by a PL lifetime lengthening from 0.7 to 3.8 µs. Elemental mapping and X-ray photoelectron spectroscopy indicate that the PL enhancement is related to the partial removal of sulfur atoms from the nanoparticle's surface, reducing surface traps responsible for nonradiative de-excitation processes. This interpretation is further backed by theoretical modeling. The acquired knowledge about the nanoparticles' surface chemistry is used to optimize the procedure to transfer the nanoparticles into aqueous media, obtaining water-dispersible Ag2S nanoparticles that maintain excellent PL properties. Finally, we compare the performance of these nanoparticles with other near-infrared luminescent probes in a set of in vitro and in vivo experiments, which demonstrates not only their cytocompatibility but also their superb optical properties when they are used in vivo, affording higher resolution images.


Assuntos
Materiais Biocompatíveis/química , Nanopartículas/química , Imagem Óptica , Prata/química , Enxofre/química , Raios Infravermelhos , Teste de Materiais , Tamanho da Partícula , Propriedades de Superfície
16.
Langmuir ; 27(17): 10484-91, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21790174

RESUMO

In this work, we describe a new methodology for the preparation of monodisperse and thermosensitive microgels with magnetic core. In order to produce such a material, hydrophobic magnetic Fe(3)O(4) nanoparticles were prepared by two methods: thermal decomposition and coprecipitation. The surface of these nanoparticles was modified by addition of 3-butenoic acid, and after that these nanoparticles were dispersed in water and submitted to free radical polymerization at 70 °C in the presence of N-isopropylacrylamide (NIPAM) and bisacrylamide. The result of this reaction was monodisperse microgels with a magnetic core. By varying the amount of 3-butenoic acid, it was possible to obtain hybrid microgels with different magnetic core sizes and different architectures.


Assuntos
Géis/síntese química , Nanopartículas de Magnetita/química , Temperatura , Acrilamidas/química , Butiratos/química , Géis/química , Magnetismo , Tamanho da Partícula , Propriedades de Superfície
17.
Int J Pharm ; 608: 121121, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34560203

RESUMO

The objective of this work was to evaluate the potential use of a new polymer (PAMgA) in the development sustained release matrix tablets for the treatment of bowel inflammatory diseases. For this purpose, budesonide, a highly lipophilic compound, was used as model drug. Tablets with two reticulation grades of PAMgA (PAMgA 5 and 40) and with 9 mg of budesonide were developed and characterized. All the studies were carried out using biorelevant media (FaSSGF and FaSSIF). Swelling and erosion of PAMgA tablets was influenced by the reticulation grade of the polymer and the biorelevant media assayed, being water uptake higher for PAMgA 40 tablets in intestinal fluid, whereas PAMgA 5 showed more intense erosion in this biorelevant medium. Budesonide was released slowly from PAMgA tablets, both in gastric and intestinal environment, following Super case II transport kinetics (relaxation-controlled delivery), with a lag time of around 1-2 h. When the dissolution medium was changed sequentially throughout the trial, 75% of the budesonide dose was released in a sustained manner between 4 and 20 h of testing from PAMgA tablets, showing a more controlled budesonide release than Entocort® and Budenofalk® (commercially available sustained release formulations of budesonide). In conclusion, PAMgA polymer allows controlling the release of highly lipophilic drugs as budesonide, being an useful excipient for the development of sustained release matrix tablets.


Assuntos
Hidrogéis , Doenças Inflamatórias Intestinais , Acrilatos , Preparações de Ação Retardada , Humanos , Solubilidade , Comprimidos
18.
J Colloid Interface Sci ; 596: 64-74, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838326

RESUMO

In this work, we present a luminescence platform that can be used as point of care system for determining the presence and concentration of specific oligonucleotide sequences. This sensor exhibited a limit of detection as low as 50 fM by means of: (i) the use of single-stranded DNA (ssDNA) functionalized magnetic microparticles that captured and concentrated ssDNA-upconverting nanoparticles (ssDNA-UCNPs) on a solid support, when the target sequence (miR-21-5p DNA-analogue) was in the sample, and (ii) a photoligation reaction that covalently linked the ssDNA-UCNPs and the ssDNA magnetic microparticles, allowing stringent washes. The presented sensor showed a similar limit of detection when the assays were conducted in samples containing total miRNA extracted from human serum, demonstrating its suitability for detecting small specific oligonucleotide sequences under real-like conditions. The strategy of combining UCNPs, magnetic microparticles, and a photoligation reaction provides new insight into low-cost, rapid, and ultra-sensitive detection of oligonucleotide sequences.


Assuntos
Técnicas Biossensoriais , Nanopartículas , DNA de Cadeia Simples , Humanos , Luminescência , Oligonucleotídeos
19.
Adv Sci (Weinh) ; 8(9): 2003838, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33977056

RESUMO

Luminescent nano-thermometry is a fast-developing technique with great potential for in vivo sensing, diagnosis, and therapy. Unfortunately, it presents serious limitations. The luminescence generated by nanothermometers, from which thermal readout is obtained, is strongly distorted by the attenuation induced by tissues. Such distortions lead to low signal levels and entangle absolute and reliable thermal monitoring of internal organs. Overcoming both limitations requires the use of high-brightness luminescent nanothermometers and adopting more complex approaches for temperature estimation. In this work, it is demonstrated how superbright Ag2S nanothermometers can provide in vivo, reliable, and absolute thermal reading of the liver during laser-induced hyperthermia. For that, a new procedure is designed in which thermal readout is obtained from the combination of in vivo transient thermometry measurements and in silico simulations. The synergy between in vivo and in silico measurements has made it possible to assess relevant numbers such as the efficiency of hyperthermia processes, the total heat energy deposited in the liver, and the relative contribution of Ag2S nanoparticles to liver heating. This work provides a new way for absolute thermal sensing of internal organs with potential application not only to hyperthermia processes but also to advanced diagnosis and therapy.


Assuntos
Simulação por Computador , Hipertermia Induzida , Fígado/fisiopatologia , Nanotecnologia/métodos , Termômetros , Termometria/métodos , Animais , Modelos Animais de Doenças , Desenho de Equipamento , Feminino , Luminescência , Camundongos , Termometria/instrumentação
20.
Langmuir ; 26(22): 17649-55, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20949923

RESUMO

This study reports on the fabrication of magnetically responsive hollow titania capsules by confining the superparamagnetic Fe(3)O(4) nanoparticles within a hollow and porous titania (TiO(2)) shell. The employed protocol involves precipitation of titania shell on the magnetite (Fe(3)O(4)) encapsulated polystyrene beads followed by the calcination of resulting composite particles at elevated temperature. Scanning electron microscopy and transmission electron microscopy reveal the presence of a thick, complete but irregular titania shell on the magnetic polystyrene beads after the templating process. Electron energy loss mapping image analysis has been employed to investigate the spatial distribution of titania and magnetite phases of magnetic hollow titania capsules (MHTCs). Magnetic characterization indicates that both titania-coated magnetic polystyrene beads (TMPBs) and MHTCs are superparamagnetic in nature with the saturated magnetizations of 5.6 and 8.1 emu/g, respectively. X-ray diffraction (XRD) analysis reveals that titania shell of these capsules is composed of photoactive anatase phase. Nitrogen adsorption-desorption analysis has been employed to estimate the specific surface area and the average pore diameter of the fabricated hollow structures. Photocatalytic activity of the fabricated MHTCs for the photodegradation of rhodamine 6G dye has been demonstrated and compared with that of bulk titania nanoparticles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa