Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 573(7773): 251-255, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31511682

RESUMO

Most chemical experiments are planned by human scientists and therefore are subject to a variety of human cognitive biases1, heuristics2 and social influences3. These anthropogenic chemical reaction data are widely used to train machine-learning models4 that are used to predict organic5 and inorganic6,7 syntheses. However, it is known that societal biases are encoded in datasets and are perpetuated in machine-learning models8. Here we identify as-yet-unacknowledged anthropogenic biases in both the reagent choices and reaction conditions of chemical reaction datasets using a combination of data mining and experiments. We find that the amine choices in the reported crystal structures of hydrothermal synthesis of amine-templated metal oxides9 follow a power-law distribution in which 17% of amine reactants occur in 79% of reported compounds, consistent with distributions in social influence models10-12. An analysis of unpublished historical laboratory notebook records shows similarly biased distributions of reaction condition choices. By performing 548 randomly generated experiments, we demonstrate that the popularity of reactants or the choices of reaction conditions are uncorrelated to the success of the reaction. We show that randomly generated experiments better illustrate the range of parameter choices that are compatible with crystal formation. Machine-learning models that we train on a smaller randomized reaction dataset outperform models trained on larger human-selected reaction datasets, demonstrating the importance of identifying and addressing anthropogenic biases in scientific data.


Assuntos
Viés , Técnicas de Química Sintética/estatística & dados numéricos , Pessoal de Laboratório/estatística & dados numéricos , Aprendizado de Máquina , Humanos , Pessoal de Laboratório/psicologia
2.
Biotechniques ; 65(4): 205-210, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30284934

RESUMO

We have developed a simple and robust probe-free quantitative PCR (qPCR) assay method that can detect minor mutant alleles with a frequency as low as 0.1% in a heterogeneous sample by introducing a novel T-blocker concept to the allele-specific PCR method. Four new KRAS and BRAF mutation detection assays were developed and their performance was demonstrated by testing a large number of replicates, utilizing a customized PCR protocol. Highly efficient and specific mutant amplification in conjunction with selective wild-type suppression by the T-blocker concept enabled 0.1% detection sensitivity using the intercalating dye-based qPCR chemistry instead of more complex target-specific dye-labeled probes. Excellent consistency in sensitivity and specificity of the T-blocker assay concept was demonstrated.


Assuntos
Análise Mutacional de DNA/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Alelos , Corantes/análise , DNA/análise , DNA/genética , Células HeLa , Humanos , Substâncias Intercalantes/análise , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa