Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 309(8): G625-34, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26206857

RESUMO

Neuropeptide S (NPS) receptor (NPSR1) polymorphisms are associated with enteral dysmotility and inflammatory bowel disease (IBD). This study investigated the role of NPS in conjunction with nitrergic mechanisms in the regulation of intestinal motility and mucosal permeability. In rats, small intestinal myoelectric activity and luminal pressure changes in small intestine and colon, along with duodenal permeability, were studied. In human intestine, NPS and NPSR1 were localized by immunostaining. Pre- and postprandial plasma NPS was measured by ELISA in healthy and active IBD humans. Effects and mechanisms of NPS were studied in human intestinal muscle strips. In rats, NPS 100-4,000 pmol·kg(-1)·min(-1) had effects on the small intestine and colon. Low doses of NPS increased myoelectric spiking (P < 0.05). Higher doses reduced spiking and prolonged the cycle length of the migrating myoelectric complex, reduced intraluminal pressures (P < 0.05-0.01), and increased permeability (P < 0.01) through NO-dependent mechanisms. In human intestine, NPS localized at myenteric nerve cell bodies and fibers. NPSR1 was confined to nerve cell bodies. Circulating NPS in humans was tenfold below the ∼0.3 nmol/l dissociation constant (Kd) of NPSR1, with no difference between healthy and IBD subjects. In human intestinal muscle strips precontracted by bethanechol, NPS 1-1,000 nmol/l induced NO-dependent muscle relaxation (P < 0.05) that was sensitive also to tetrodotoxin (P < 0.01). In conclusion, NPS inhibits motility and increases permeability in neurocrine fashion acting through NO in the myenteric plexus in rats and humans. Aberrant signaling and upregulation of NPSR1 could potentially exacerbate dysmotility and hyperpermeability by local mechanisms in gastrointestinal functional and inflammatory reactions.


Assuntos
Motilidade Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Neuropeptídeos/metabolismo , Óxido Nítrico/metabolismo , Adulto , Animais , Betanecol , Biomarcadores , Regulação da Expressão Gênica/fisiologia , Humanos , Inflamação/metabolismo , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Neuropeptídeos/sangue , Neuropeptídeos/farmacologia , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Permeabilidade , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
2.
Naunyn Schmiedebergs Arch Pharmacol ; 386(1): 41-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23179899

RESUMO

YF476 differs from the proton pump inhibitor (PPI) esomeprazole in mode of action by antagonizing the type 2 receptor of cholecystokinin/gastrin (CCK-2R). YF476 protection against diclofenac-induced gastric ulcers was compared to esomeprazole and correlated with plasma levels of hormones related to gastric pH (gastrin, ghrelin, and somatostatin), gastric gene expression of these hormones, their receptors, and inducible nitric oxide synthase (iNOS). YF476 or esomeprazole pretreatments were followed by diclofenac. Four hours later, gastric tissue was excised and analyzed for ulcer index. An intragastrically implanted Bravo capsule measured pH for 5 days during YF476 plus pentagastrin treatment. Changes in gene expression were assayed for gastrin, ghrelin, and somatostatin; their receptors; and iNOS. YF476 acutely (within 4 h) protected against diclofenac-induced gastric ulcers equivalent to esomeprazole. Gastric pH recorded during 5 days in the presence of pentagastrin was 1.83 (±0.06). YF476 raised pH to 3.67 (±0.09) and plasma ghrelin, gastrin, and somatostatin increased. YF476 increased gene expression of somatostatin receptor and gastrin, while ghrelin receptor decreased; transcripts coding ghrelin, somatostatin, and CCK-2R remained unchanged. In the presence of diclofenac, esomeprazole increased expression of all these transcripts and that of iNOS, while YF476 yielded only decreased CCK-2R and increased iNOS transcripts. YF476 is a potential new preventative treatment for patients at risk of nonsteroidal antiinflammatory drug (NSAID)-induced ulceration. Gastric gene expressions of ghrelin, gastrin, and somatostatin and their receptors differ between esomeprazole and YF476. Despite these differences and different modes of action to raise gastric pH, both drugs acutely increase iNOS, suggesting iNOS expression parallels pH.


Assuntos
Benzodiazepinonas/farmacologia , Óxido Nítrico Sintase Tipo II/genética , Compostos de Fenilureia/farmacologia , Receptor de Colecistocinina B/antagonistas & inibidores , Úlcera Gástrica/prevenção & controle , Animais , Anti-Inflamatórios não Esteroides/toxicidade , Antiulcerosos/farmacologia , Diclofenaco/toxicidade , Esomeprazol/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Masculino , Ratos , Ratos Sprague-Dawley , Úlcera Gástrica/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa