Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microelectron Eng ; 97: 341-344, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23729946

RESUMO

Direct and fast (10s of seconds) deposition of flame-made, high surface-area aerosol films on polymers and polymeric microfluidic devices is demonstrated. Uniform TiO2 nanoparticle films were deposited on cooled Poly(methyl methacrylate) (PMMA) substrates by combustion of titanium(IV) isopropoxide (TTIP) - xylene solution sprays. Films were mechanically stabilized by in-situ annealing with a xylene spray flame. Plasma-etched microfluidic chromatography columns, comprising parallel microchannels were also coated with such nanoparticle films without any microchannel deformation. These microcolumns were successfully used in metal-oxide affinity chromatography (MOAC) to selectively trap phosphopeptides on these high surface-area nanostructured films. The chips had a high capacity retaining 1.2 µg of standard phosphopeptide. A new extremely fast method is developed for MOAC microchip stationary phase fabrication with applications in proteomics.

2.
Ind Eng Chem Res ; 51(23): 7891-7900, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407874

RESUMO

Low-cost synthesis of iron phosphate nanostructured particles is attractive for large scale fortification of basic foods (rice, bread, etc.) as well as for Li-battery materials. This is achieved here by flame-assisted and flame spray pyrolysis (FASP and FSP) of inexpensive precursors (iron nitrate, phosphate), solvents (ethanol), and support gases (acetylene and methane). The iron phosphate powders produced here were mostly amorphous and exhibited excellent solubility in dilute acid, an indicator of relative iron bioavailability. The amorphous and crystalline fractions of such powders were determined by X-ray diffraction (XRD) and their cumulative size distribution by X-ray disk centrifuge. Fine and coarse size fractions were obtained also by sedimentation and characterized by microscopy and XRD. The coarse size fraction contained maghemite Fe(2)O(3) while the fine was amorphous iron phosphate. Furthermore, the effect of increased production rate (up to 11 g/h) on product morphology and solubility was explored. Using increased methane flow rates through the ignition/pilot flame of the FSP-burner and inexpensive powder precursors resulted in also homogeneous iron phosphate nanoparticles essentially converting the FSP to a FASP process. The powders produced by FSP at increased methane flow had excellent solubility in dilute acid as well. Such use of methane or even natural gas might be economically attractive for large scale flame-synthesis of nanoparticles.

3.
J Nanopart Res ; 13(7): 2715-2725, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23408113

RESUMO

A new flame-assisted spray pyrolysis (FASP) reactor design is presented, which allows the use of inexpensive precursors and solvents (e.g., ethanol) for synthesis of nanoparticles (10-20 nm) with uniform characteristics. In this reactor design, a gas-assisted atomizer generates the precursor solution spray that is mixed and combusted with externally fed inexpensive fuel gases (acetylene or methane) at a defined height above the atomizing nozzle. The gaseous fuel feed can be varied to control the combustion enthalpy content of the flame and onset of particle formation. This way, the enthalpy density of the flame is decoupled from the precursor solution composition. Low enthalpy content precursor solutions are prone to synthesis of non-uniform particles (e.g., bimodal particle size distribution) by standard flame spray pyrolysis (FSP) processes. For example, metal nitrates in ethanol typically produce nanosized particles by gas-to-particle conversion along with larger particles by droplet-to-particle conversion. The present FASP design facilitates the use of such low enthalpy precursor solutions for synthesis of homogeneous nanopowders by increasing the combustion enthalpy density of the flame with low-cost, gaseous fuels. The effect of flame enthalpy density on product properties in the FASP configuration is explored by the example of Bi(2)O(3) nanoparticles produced from bismuth nitrate in ethanol. Product powders were characterized by nitrogen adsorption, X-ray diffraction, X-ray disk centrifuge, and transmission electron microscopy. Homogeneous Bi(2)O(3) nanopowders were produced both by increasing the gaseous fuel content and, most notably, by cutting the air entrainment prior to ignition of the spray.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa