Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 147(9): 746-758, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36695175

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a short-term life-threatening condition that, if survived, can lead to renal insufficiency and development of chronic kidney disease. The pathogenesis of AKI and chronic kidney disease involves direct effects on the heart and the development of hypertrophy and cardiomyopathy. METHODS: We used mouse models of ischemia/reperfusion AKI and unilateral ureteral obstruction to investigate the role of IL-33 (interleukin-33) and its receptor-encoding gene Il1rl1 (also called ST2L [suppression of tumorigenicity 2]) in cardiac remodeling after AKI. Mice with cell type-specific genetic disruption of the IL-33/ST2L axis were used, and IL-33 monoclonal antibody, adeno-associated virus encoding IL-33 or ST2L, and recombinant IL-33, as well. RESULTS: Mice deficient in Il33 were refractory to cardiomyopathy associated with 2 models of kidney injury. Treatment of mice with monoclonal IL-33 antibody also protected the heart after AKI. Moreover, overexpression of IL-33 or injection of recombinant IL-33 induced cardiac hypertrophy or cardiomyopathy, but not in mice lacking Il1rl1. AKI-induced cardiomyopathy was also reduced in mice with cardiac myocyte-specific deletion of Il1rl1 but not in endothelial cell- or fibroblast-specific deletion of Il1rl1. Last, overexpression of the ST2L receptor in cardiac myocytes recapitulated induction of cardiac hypertrophy. CONCLUSIONS: These results indicate that IL-33 released from the kidney during AKI underlies cardiorenal syndrome by directly signaling to cardiac myocytes, suggesting that antagonism of IL-33/ST2 axis would be cardioprotective in patients with kidney disease.


Assuntos
Injúria Renal Aguda , Cardiomiopatias , Interleucina-33 , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , Camundongos , Injúria Renal Aguda/etiologia , Cardiomegalia/patologia , Cardiomiopatias/genética , Cardiomiopatias/complicações , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Rim/patologia , Miócitos Cardíacos/patologia , Insuficiência Renal Crônica/complicações , Traumatismo por Reperfusão/patologia
2.
J Am Soc Nephrol ; 31(12): 2793-2814, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115917

RESUMO

BACKGROUND: Current management of AKI, a potentially fatal disorder that can also initiate or exacerbate CKD, is merely supportive. Therefore, deeper understanding of the molecular pathways perturbed in AKI is needed to identify targets with potential to lead to improved treatment. METHODS: We performed single-cell RNA sequencing (scRNA-seq) with the clinically relevant unilateral ischemia-reperfusion murine model of AKI at days 1, 2, 4, 7, 11, and 14 after AKI onset. Using real-time quantitative PCR, immunofluorescence, Western blotting, and both chromogenic and single-molecule in situ hybridizations, we validated AKI signatures in multiple experiments. RESULTS: Our findings show the time course of changing gene expression patterns for multiple AKI stages and all renal cell types. We observed elevated expression of crucial injury response factors-including kidney injury molecule-1 (Kim1), lipocalin 2 (Lcn2), and keratin 8 (Krt8)-and of several novel genes (Ahnak, Sh3bgrl3, and Col18a1) not previously examined in kidney pathologies. AKI induced proximal tubule dedifferentiation, with a pronounced nephrogenic signature represented by Sox4 and Cd24a. Moreover, AKI caused the formation of "mixed-identity cells" (expressing markers of different renal cell types) that are normally seen only during early kidney development. The injured tubules acquired a proinflammatory and profibrotic phenotype; moreover, AKI dramatically modified ligand-receptor crosstalk, with potential pathologic epithelial-to-stromal interactions. Advancing age in AKI onset was associated with maladaptive response and kidney fibrosis. CONCLUSIONS: The scRNA-seq, comprehensive, cell-specific profiles provide a valuable resource for examining molecular pathways that are perturbed in AKI. The results fully define AKI-associated dedifferentiation programs, potential pathologic ligand-receptor crosstalk, novel genes, and the improved injury response in younger mice, and highlight potential targets of kidney injury.


Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Células Epiteliais/fisiologia , Túbulos Renais Proximais/patologia , Células Estromais/fisiologia , Animais , Comunicação Celular , Modelos Animais de Doenças , Masculino , Camundongos , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Análise de Sequência de RNA
3.
Sci Rep ; 14(1): 439, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172172

RESUMO

Examining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive. Here, we analyzed single cell transcriptomic profiles of two clinically relevant kidney fibrosis models which induced robust kidney parenchymal remodeling. We dissected the molecular and cellular landscapes of kidney stroma and newly identified three distinctive fibroblast clusters with "secretory", "contractile" and "vascular" transcriptional enrichments. Also, both injuries generated failed repair TECs (frTECs) characterized by decline of mature epithelial markers and elevation of stromal and injury markers. Notably, frTECs shared transcriptional identity with distal nephron segments of the embryonic kidney. Moreover, we identified that both models exhibited robust and previously unrecognized distal spatial pattern of TEC injury, outlined by persistent elevation of renal TEC injury markers including Krt8 and Vcam1, while the surviving proximal tubules (PTs) showed restored transcriptional signature. We also found that long-term kidney injuries activated a prominent nephrogenic signature, including Sox4 and Hox gene elevation, which prevailed in the distal tubular segments. Our findings might advance understanding of and targeted intervention in fibrotic kidney disease.


Assuntos
Túbulos Renais , Insuficiência Renal Crônica , Humanos , Túbulos Renais/patologia , Rim/patologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Fibroblastos/fisiologia , Fibrose
4.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798483

RESUMO

Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrß) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrß-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.

5.
Res Sq ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37293022

RESUMO

Examining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive. Here, we analyzed single cell transcriptomic profiles of two clinically relevant kidney fibrosis models which induced robust kidney parenchymal remodeling. We dissected the molecular and cellular landscapes of kidney stroma and newly identified three distinctive fibroblast clusters with "secretory", "contractile" and "vascular" transcriptional enrichments. Also, both injuries generated failed repair TECs (frTECs) characterized by decline of mature epithelial markers and elevation of stromal and injury markers. Notably, frTECs shared transcriptional identity with distal nephron segments of the embryonic kidney. Moreover, we identified that both models exhibited robust and previously unrecognized distal spatial pattern of TEC injury, outlined by persistent elevation of renal TEC injury markers including Krt8, while the surviving proximal tubules (PTs) showed restored transcriptional signature. Furthermore, we found that long-term kidney injuries activated a prominent nephrogenic signature, including Sox4 and Hox gene elevation, which prevailed in the distal tubular segments. Our findings might advance understanding of and targeted intervention in fibrotic kidney disease.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa