Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(44)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37494897

RESUMO

Semiconductor nanowires (NWs) in horizontal configuration could provide a path for scalable NW-based devices. Bottom-up large-scale manufacturing of these nanostructures by selective area epitaxy (SAE) relies on precise nanopatterning of various shapes on the growth masks. Electron beam lithography offers an extraordinary accuracy suited for the purpose. However, this technique is not economically viable for large production as it has a low throughput and requires high investment and operational costs. Nanoimprint lithography (NIL) has the potential to reduce fabrication time and costs significantly while requiring less sophisticated equipment. In this work, we utilize both thermal and UV NIL for patterning substrates for SAE, elucidating the advantages and disadvantages of each lithography technique. We demonstrate the epitaxial growth of Ge and GaAs NWs on these substrates, where we observe high-quality mono-crystalline structures. Even though both processes can produce small uniform structures suitable for SAE, our results show that UV NIL proves to be superior and enables reliable and efficient patterning of sub-100 nm mask features at the wafer scale.

2.
Nano Lett ; 22(10): 4269-4275, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35507698

RESUMO

Holes in germanium nanowires have emerged as a realistic platform for quantum computing based on spin qubit logic. On top of the large spin-orbit coupling that allows fast qubit operation, nanowire geometry and orientation can be tuned to cancel out charge noise and hyperfine interaction. Here, we demonstrate a scalable approach to synthesize and organize Ge nanowires on silicon (100)-oriented substrates. Germanium nanowire networks are obtained by selectively growing on nanopatterned slits in a metalorganic vapor phase epitaxy system. Low-temperature electronic transport measurements are performed on nanowire Hall bar devices revealing high hole doping of ∼1018 cm-3 and mean free path of ∼10 nm. Quantum diffusive transport phenomena, universal conductance fluctuations, and weak antilocalization are revealed through magneto transport measurements yielding a coherence and a spin-orbit length of the order of 100 and 10 nm, respectively.

3.
Phys Rev Lett ; 114(4): 047402, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25679907

RESUMO

We study a specific type of lifetime broadening resulting in the well-known exponential "Urbach tail" density of states within the energy gap of an insulator. After establishing the frequency and temperature dependence of the Urbach edge in GaAs quantum wells, we show that the broadening due to the zero-point optical phonons is the fundamental limit to the Urbach slope in high-quality samples. In rough analogy with Welton's heuristic interpretation of the Lamb shift, the zero-temperature contribution to the Urbach slope can be thought of as arising from the electric field of the zero-point longitudinal-optical phonons. The value of this electric field is experimentally measured to be 3 kV cm-1, in excellent agreement with the theoretical estimate.

4.
Nanoscale Horiz ; 9(4): 555-565, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38353654

RESUMO

Germanium nanowires could be the building blocks of hole-spin qubit quantum computers. Selective area epitaxy enables the direct integration of Ge nanowires on a silicon chip while controlling the device design, density, and scalability. For this to become a reality, it is essential to understand and control the initial stages of the epitaxy process. In this work, we highlight the importance of surface treatment in the reactor prior to growth to achieve high crystal quality and connected Ge nanowire structures. In particular, we demonstrate that exposure to AsH3 during the high-temperature treatment enhances lateral growth of initial Ge islands and promotes faster formation of continuous Ge nanowires in trenches. The Kolmogorov-Johnson-Mehl-Avrami crystallization model supports our explanation of Ge coalescence. These results provide critical insight into the selective epitaxy of horizontal Ge nanowires on lattice-mismatched Si substrates, which can be translated to other material systems.

5.
Cryst Growth Des ; 23(7): 5083-5092, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37426543

RESUMO

Selective area epitaxy at the nanoscale enables fabrication of high-quality nanostructures in regular arrays with predefined geometry. Here, we investigate the growth mechanisms of GaAs nanoridges on GaAs (100) substrates in selective area trenches by metal-organic vapor-phase epitaxy (MOVPE). It is found that pre-growth annealing results in the formation of valley-like structures of GaAs with atomic terraces inside the trenches. MOVPE growth of GaAs nanoridges consists of three distinct stages. Filling the trench in the first stage exhibits a step-flow growth behavior. Once the structure grows above the mask surface, it enters the second stage of growth by forming {101} side facets as the (100) flat top facet progressively shrinks. In the third stage, the fully formed nanoridge begins to overgrow onto the mask with a significantly reduced growth rate. We develop a kinetic model that accurately describes the width-dependent evolution of the nanoridge morphology through all three stages. MOVPE growth of fully formed nanoridges takes only about 1 min, which is 60 times faster than in our set of molecular beam epitaxy (MBE) experiments reported recently, and with a more regular, triangular cross-sectional geometry defined solely by the {101} facets. In contrast to MBE, no material loss due to Ga adatom diffusion onto the mask surface is observed in MOVPE until the third stage of growth. These results are useful for the fabrication of GaAs nanoridges of different dimensions on the same substrate for various applications and can be extended to other material systems.

6.
Opt Express ; 19(3): 2619-25, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21369082

RESUMO

Coupling of L-type photonic-crystal (PhC) cavities in a geometry that follows inherent cavity field distribution is exploited for demonstrating large mode splitting of up to ~10-20 nm (~15-30 meV) near 1 µm wavelength. This is much larger than the disorder-induced cavity detuning for conventional PhC technology, which ensures reproducible coupling. Furthermore, a microlaser based on such optimally coupled PhC cavities and incorporating quantum wire gain medium is demonstrated, with potential applications in fast switching and modulation.


Assuntos
Lasers , Refratometria/instrumentação , Cristalização , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Fótons
7.
Opt Express ; 18(1): 117-22, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-20173830

RESUMO

A transition from discrete optical modes to 1D photonic bands is experimentally observed and numerically studied in planar photonic-crystal (PhC) L(N) microcavities of length N. For increasing N the confined modes progressively acquire a well-defined momentum, eventually reconstructing the band dispersion of the corresponding waveguide. Furthermore, photon localization due to disorder is observed experimentally in the membrane PhCs using spatially resolved photoluminescence spectroscopy. Implications on single-photon sources and transfer lines based on quasi-1D PhC structures are discussed.


Assuntos
Iluminação/instrumentação , Dispositivos Ópticos , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons
8.
Small ; 5(8): 938-43, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19235797

RESUMO

Semiconductor quantum-dot (QD) systems offering perfect site control and tunable emission energy are essential for numerous nanophotonic device applications involving spatial and spectral matching of dots with optical cavities. Herein, the properties of ordered InGaAs/GaAs QDs grown by organometallic chemical vapor deposition on substrates patterned with pyramidal recesses are reported. The seeded growth of a single QD inside each pyramid results in near-perfect (<10 nm) control of the QD position. Moreover, efficient and uniform photoluminescence (inhomogeneous broadening <10 meV) is observed from ordered arrays of such dots. The QD emission energy can be finely tuned by varying 1) the pyramid size and 2) its position within specific patterns. This tunability is brought about by the patterning of both the chemical properties and the surface curvature features of the substrate, which allows local control of the adatom fluxes that determine the QD thickness and composition.


Assuntos
Arsênio/química , Arsenicais/química , Gálio/química , Índio/química , Nanoestruturas/química , Pontos Quânticos , Luminescência , Propriedades de Superfície
9.
Opt Express ; 17(20): 18178-83, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19907608

RESUMO

Site-controlled quantum-wire photonic-crystal microcavity laser is experimentally demonstrated using optical pumping. The single-mode lasing and threshold are established based on the transient laser response, linewidth narrowing, and the details of the non-linear power input-output characteristics. Average-power threshold as low as approximately 240 nW (absorbed power) and spontaneous emission coupling coefficient beta approximately 0.3 are derived.


Assuntos
Lasers Semicondutores , Pontos Quânticos , Refratometria/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Opt Express ; 16(20): 16255-64, 2008 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-18825265

RESUMO

Coupling between photonic-crystal defect microcavities is observed to result in a splitting not only of the mode wavelength but also of the modal loss. It is discussed that the characteristics of the loss splitting may have an important impact on the optical energy transfer between the coupled resonators. The loss splitting--given by the imaginary part of the coupling strength--is found to arise from the difference in diffractive out-of-plane radiation losses of the symmetric and the antisymmetric modes of the coupled system. An approach to control the splitting via coupling barrier engineering is presented.


Assuntos
Cristalização , Óptica e Fotônica , Fótons , Simulação por Computador , Transferência de Energia , Desenho de Equipamento , Tecnologia de Fibra Óptica , Luz , Modelos Estatísticos , Modelos Teóricos , Espalhamento de Radiação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa