Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(44): 9178-9184, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37878768

RESUMO

An important concern related to the performance of Li-ion batteries is the formation of a solid electrolyte interphase on the surface of the anode. This film is formed from the decomposition of electrolytes and can have important effects on the stability and performance. Here, we evaluate the decomposition pathway of ethylene carbonate and related organic electrolyte molecules using a series of density functional approximations and correlated wave function (WF) methods, including the coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and auxiliary-field quantum Monte Carlo (AFQMC). We find that the transition state barrier associated with ring opening varies widely across different functionals, ranging from 3.01 to 17.15 kcal/mol, which can be compared to the value of 12.84 kcal/mol predicted by CCSD(T). This large variation underscores the importance of benchmarking against accurate WF methods. A performance comparison of all of the density functionals used in this study reveals that the M06-2X-D3 (a meta-hybrid GGA), CAM-B3LYP-D3 (a range-separated hybrid), and B2GP-PLYP-D3 (a double hybrid) perform the best, with average errors of about 1.50-1.60 kcal/mol compared to CCSD(T). We also compared the performance of the WF methods that are more scalable than CCSD(T), finding that DLPNO-CCSD(T) and phaseless AFQMC with a DFT trial wave function exhibit average errors of 1.38 and 1.74 kcal/mol, respectively.

2.
J Am Chem Soc ; 142(24): 10806-10813, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32431151

RESUMO

Accurately characterizing isoprene ozonolysis continues to challenge atmospheric chemists. The reaction is believed to be a spontaneous, concerted cycloaddition. However, little information is available about the entrance channel and isoprene-ozone complexes thought to define the long-range portion of the reaction coordinate. Our coupled cluster and auxiliary field quantum Monte Carlo calculations predict multiple stable isoprene-ozone van der Waals complexes for trans-isoprene in the gas phase with moderate association energies. These results indicate that long-range dynamics in the isoprene-ozone entrance channel can impact the overall reaction in the troposphere and provide the spectroscopic information necessary to extend the microwave characterization of isoprene ozonolysis to prereactive complexes. At the air-water interface, Born-Oppenheimer molecular dynamics simulations indicate that the cycloaddition reaction between ozone and trans-isoprene follows a stepwise mechanism, which is quite distinct from our proposed gas-phase mechanism and occurs on a femtosecond time scale. The stepwise nature of isoprene ozonolysis on the aqueous surface is more consistent with the DeMore mechanism than with the Criegee mechanism suggested by the gas-phase calculations, suggesting that the reaction media may play an important role in the reaction. Overall, these predictions aim to provide a missing fundamental piece of molecular insight into isoprene ozonolysis, which has broad tropospheric implications due to its critical role as a nighttime source of hydroxyl radicals.


Assuntos
Butadienos/química , Hemiterpenos/química , Simulação de Dinâmica Molecular , Ozônio/química , Teoria da Densidade Funcional , Método de Monte Carlo
3.
Acc Chem Res ; 52(5): 1289-1300, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31056907

RESUMO

Rhenium and manganese bipyridyl tricarbonyl complexes have attracted intense interest for their promising applications in photocatalytic and electrocatalytic CO2 reduction in both homogeneous and heterogenized systems. To date, there have been extensive studies on immobilizing Re catalysts on solid surfaces for higher catalytic efficiency, reduced catalyst loading, and convenient product separation. However, in order for the heterogenized molecular catalysts to achieve the combination of the best aspects of homogeneous and heterogeneous catalysts, it is essential to understand the fundamental physicochemical properties of such heterogeneous systems, such as surface-bound structures of Re/Mn catalysts, substrate-adsorbate interactions, and photoinduced or electric-field-induced effects on Re/Mn catalysts. For example, the surface may act to (un)block substrates, (un)trap charges, (de)stabilize particular intermediates (and thus affect scaling relations), and shift potentials in different directions, just as protein environments do. The close collaboration between the Lian, Batista, and Kubiak groups has resulted in an integrated approach to investigate how the semiconductor or metal surface affects the properties of the attached catalyst. Synthetic strategies to achieve stable and controlled attachment of Re/Mn molecular catalysts have been developed. Steady-state, time-resolved, and electrochemical vibrational sum-frequency generation (SFG) spectroscopic studies have provided insight into the effects of interfacial structures, ultrafast vibrational energy relaxation, and electric field on the Re/Mn catalysts, respectively. Various computational methods utilizing density functional theory (DFT) have been developed and applied to determine the molecular orientation by direct comparison to spectroscopy, unravel vibrational energy relaxation mechanisms, and quantify the interfacial electric field strength of the Re/Mn catalyst systems. This Account starts with a discussion of the recent progress in determining the surface-bound structures of Re catalysts on semiconductor and Au surfaces by a combined vibrational SFG and DFT study. The effects of crystal facet, length of anchoring ligands, and doping of the semiconductor on the bound structures of Re catalysts and of the substrate itself are discussed. This is followed by a summary of the progress in understanding the vibrational relaxation (VR) dynamics of Re catalysts covalently adsorbed on semiconductor and metal surfaces. The VR processes of Re catalysts on TiO2 films and TiO2 single crystals and a Re catalyst tethered on Au, particularly the role of electron-hole pair (EHP)-induced coupling on the VR of the Re catalyst bound on Au, are discussed. The Account also summarizes recent studies in quantifying the electric field strength experienced by the catalytically active site of the Re/Mn catalyst bound on a Au electrode based on a combined electrochemical SFG and DFT study of the Stark tuning of the CO stretching modes of these catalysts. Finally, future research directions on surface-immobilized molecular catalyst systems are discussed.

4.
Chem Soc Rev ; 48(7): 1865-1873, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30869084

RESUMO

As the challenges in science increase in scope and interdisciplinarity, collaboration becomes increasingly important. Our groups have maintained close collaborations for solar fuels research over the past decade. Based on this experience, we discuss strategies for collaboration between experiment and theory including facilitation of effective communication and navigation of problems that arise. These strategies are illustrated by case studies of collaborative efforts in solar fuels research pertaining to interfacial electron transfer in dye-sensitized metal oxides and the design and mechanism of water-oxidation catalysts.

5.
J Am Chem Soc ; 140(50): 17643-17655, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30468391

RESUMO

Attaching molecular catalysts to metal and semiconductor electrodes is a promising approach to developing new catalytic electrodes with combined advantages of molecular and heterogeneous catalysts. However, the effect of the interfacial electric field on the stability, activity, and selectivity of the catalysts is often poorly understood due to the complexity of interfaces. In this work, we examine the strength of the interfacial field at the binding site of CO2 reduction catalysts including Re(S-2,2'-bipyridine)(CO)3Cl and Mn(S-2,2'-bipyridine)(CO)3Br immobilized on Au electrodes. The vibrational spectra are probed by sum frequency generation spectroscopy (SFG), showing pronounced potential-dependent frequency shifts of the carbonyl stretching modes. Calculations of SFG spectra and Stark tuning rates based on density functional theory allow for direct interpretation of the configurations of the catalysts bound to the surfaces and the influence of the interfacial electric field. We find that electrocatalysts supported on Au electrodes have tilt angles of about 65-75° relative to the surface normal with one of the carbonyl ligands in direct contact with the surface. Large interfacial electric fields of 108-109 V/m are determined through the analysis of experimental frequency shifts and theoretical Stark tuning rates of the symmetric CO stretching mode. These large electric fields thus significantly influence the CO2 binding site.

6.
Inorg Chem ; 57(24): 15474-15480, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30481007

RESUMO

A computational inverse design method suitable to assist the development and optimization of molecular catalysts is introduced. Catalysts are obtained by continuous optimization of "alchemical" candidates in the vicinity of a reference catalyst with well-defined reaction intermediates and rate-limiting step. A NiII-iminoalkoxylate catalyst for aqueous CO/CO2 conversion is found with improved performance relative to a NiII-iminothiolate reference complex, previously reported as a biomimetic synthetic model of CO dehydroxygenase. Similar energies of other intermediates and transition states along the reaction mechanism show improved scaling relations relative to the reference catalyst. The linear combination of atomic potential tight-binding model Hamiltonian and the limited search of synthetically viable changes in the reference structure enable efficient minimization of the energy barrier for the rate-limiting step (i.e., formation of [LNiII(COOH)]-), bypassing the exponential scaling problem of high-throughput screening techniques. The reported findings demonstrate an inverse design method that could also be implemented with multiple descriptors, including reaction barriers and thermodynamic parameters for reversible reactivity.

7.
J Am Chem Soc ; 139(46): 16466-16469, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29083146

RESUMO

Spin-dependent intramolecular electron transfer is revealed in the ReI(CO)3(py)(bpy-Ph)-perylenediimide radical anion (ReI-bpy-PDI-•) dyad, a prototype model system for artificial photosynthesis. Quantum chemical calculations and ultrafast transient absorption spectroscopy experiments demonstrate that selective photoexcitation of ReI-bpy results in electron transfer from PDI-• to ReI-bpy, forming two distinct charge-shifted states. One is an overall doublet whose return to the ground state is spin-allowed. The other, high-spin quartet state, persists for 67 ns due to spin-forbidden back-electron transfer, constituting a more than thousandfold lifetime improvement compared to the low-spin state. Exploiting this spin dependency holds promise for artificial photosynthetic systems requiring long-lived reduced states to perform multi-electron chemistry.

8.
J Am Chem Soc ; 138(3): 884-92, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26713752

RESUMO

Pyridine and derivatives have been reported as efficient and selective catalysts for the electrochemical and photoelectrochemical reduction of CO2 to methanol. Although the catalytic mechanism remains a subject of considerable recent debate, most proposed models involve interfacial proton coupled electron transfer (PCET) to electrode-bound catalysts. We report a combined experimental and theoretical study of the photoreduction of 4,4'-bipyridium (bPYD) using CdSe quantum dots (QDs) as a model system for interfacial PCET. We observed ultrafast photoinduced PCET from CdSe QDs to form doubly protonated [bPYDH2](+•) radical cations at low pH (4-6). Through studies of the dependence of PCET rate on isotopic substitution, pH and bPYD concentration, the radical formation mechanism was identified to be a sequential interfacial electron and proton transfer (ET/PT) process with a rate-limiting pH independent electron transfer rate constant, kint, of 1.05 ± 0.13 × 10(10) s(-1) between a QD and an adsorbed singly protonated [bPYDH](+). Theoretical studies of the adsorption of [bPYDH](+) and methylviologen on QD surfaces revealed important effects of hydrogen bonding with the capping ligand (3-mercaptopropionic acid) on binding geometry and interfacial PCET. In the presence of sacrificial electron donors, this system was shown to be capable of generating [bPYDH2](+•) radical cations under continuous illumination at 405 nm with a steady-state photoreduction quantum yield of 1.1 ± 0.1% at pH 4. The mechanism of bPYD photoreduction reported in this work may provide useful insights into the catalytic roles of pyridine and pyridine derivatives in the electrochemical and photoelectrochemical reduction of CO2.

9.
J Am Chem Soc ; 138(34): 10978-85, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27454546

RESUMO

CuO is a nonhazardous, earth-abundant material that has exciting potential for use in solar cells, photocatalysis, and other optoelectronic applications. While progress has been made on the characterization of properties and reactivity of CuO, there remains significant controversy on how to control the precise band gap by tuning conditions of synthetic methods. Here, we combine experimental and theoretical methods to address the origin of the wide distribution of reported band gaps for CuO nanosheets. We establish reaction conditions to control the band gap and reactivity via a high-temperature treatment in an oxygen-rich environment. SEM, TEM, XRD, and BET physisorption reveals little to no change in nanostructure, crystal structure, or surface area. In contrast, UV-vis spectroscopy shows a modulation in the material band gap over a range of 330 meV. A similar trend is found in H2 temperature-programmed reduction where peak H2 consumption temperature decreases with treatment. Calculations of the density of states show that increasing the oxygen to copper coverage ratio of the surface accounts for most of the observed changes in the band gap. An oxygen exchange mechanism, supported by (18)O2 temperature-programmed oxidation, is proposed to be responsible for changes in the CuO nanosheet oxygen to copper stoichiometry. The changes induced by oxygen depletion/deposition serve to explain discrepancies in the band gap of CuO, as reported in the literature, as well as dramatic differences in catalytic performance.

10.
J Am Chem Soc ; 137(22): 7243-50, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25988658

RESUMO

The preparation of the facial and meridional isomers of [Ir(pyalk)3] (pyalk = 2-(2-pyridyl)isopropanoate), as model complexes for a powerful water oxidation catalyst, is reported. The strongly donating N3O3 ligand set is very oxidation-resistant, yet promotes facile metal-centered oxidation to form stable Ir(IV) compounds. The Ir(III/IV) reduction potentials of the two isomers differ by 340 mV despite the identical ligand set. A ligand field rationalization is advanced and supported by DFT calculations.

11.
J Am Chem Soc ; 137(4): 1520-9, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25563343

RESUMO

The behavior of crystalline nanoparticles depends strongly on which facets are exposed. Some facets are more active than others, but it is difficult to selectively isolate particular facets. This study provides fundamental insights into photocatalytic and photoelectrochemical performance of three types of TiO(2) nanoparticles with predominantly exposed {101}, {010}, or {001} facets, where 86-99% of the surface area is the desired facet. Photodegradation of methyl orange reveals that {001}-TiO(2) has 1.79 and 3.22 times higher photocatalytic activity than {010} and {101}-TiO(2), respectively. This suggests that the photochemical performance is highly correlated with the surface energy and the number of under-coordinated surface atoms. In contrast, the photoelectrochemical performance of the faceted TiO(2) nanoparticles sensitized with the commercially available MK-2 dye was highest with {010}-TiO(2) which yielded an overall cell efficiency of 6.1%, compared to 3.2% for {101}-TiO(2) and 2.6% for {001}-TiO(2) prepared under analogous conditions. Measurement of desorption kinetics and accompanying computational modeling suggests a stronger covalent interaction of the dye with the {010} and {101} facets compared with the {001} facet. Time-resolved THz spectroscopy and transient absorption spectroscopy measure faster electron injection dynamics when MK-2 is bound to {010} compared to other facets, consistent with extensive computational simulations which indicate that the {010} facet provides the most efficient and direct pathway for interfacial electron transfer. Our experimental and computational results establish for the first time that photoelectrochemical performance is dependent upon the binding energy of the dye as well as the crystalline structure of the facet, as opposed to surface energy alone.

12.
J Sulphur Chem ; 34(1-2)2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223620

RESUMO

A carbon-sulfur molecule has been designed as a mimic of peptides. Density functional theory calculations showed that the oxidation of 10 moles of methanedithiol led to a polydisulfide oligomer, HS(CH2SS)9CH2SH. The polydisulfide can adopt an α-helix type of secondary structure, where the chain is coiled. Unlike proteins, the S-S bonds in the polydisulfide function as secondary rather than tertiary structural elements. The helix contains 8 non-hydrogen atoms per turn, 2.7 Å methylenes per turn, a pitch distance of 8.6 Å, and a radius of 1.00 Å. The methylene sites could carry R group residues similar to amino acids.

13.
J Org Chem ; 77(23): 10638-47, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23126407

RESUMO

PEGylated chlorin e(6) photosensitizers were synthesized with tri(ethylene glycol) attached at the ester bond(s) for a 1:1 conjugate at the 17(3)-position, a 2:1 conjugate at the 15(2)- and 17(3)-positions, and a 3:1 conjugate at the 13(1)-, 15(2)-, and 17(3)-positions. These chlorin sensitizers were studied for hydrolytic stability and solubility, as well as ovarian OVCAR-5 cancer cell uptake, localization, and phototoxicity. Increasing numbers of the PEG groups in the mono-, di-, and tri-PEG chlorin conjugates increased the water solubility and sensitivity to hydrolysis and uptake into the ovarian cancer cells. The PEG chlorin conjugates accumulated in the cytoplasm and mitrochondria, but not in lysosomes. Higher phototoxicity was roughly correlated with higher numbers of PEG groups, with the tri-PEG chlorin conjugate showing the best overall ovarian cancer cell photokilling of the series. Singlet oxygen lifetimes, solvent deuteration, and the effects of additives azide ion and d-mannitol were examined to help clarify the photokilling mechanisms. A Type-II (singlet oxygen) photosensitized mechanism is suggested for the di- and tri-PEG chlorin conjugates; however, a more complicated process based in part on a Type-I (radicals or radical ions) mechanism is suggested for the parent chlorin e(6) and the mono-PEG chlorin conjugate.


Assuntos
Neoplasias Ovarianas/tratamento farmacológico , Fotoquimioterapia/métodos , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Clorofilídeos , Feminino , Humanos
15.
J Chem Theory Comput ; 18(5): 2845-2862, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35377642

RESUMO

The accurate ab initio prediction of ionization energies is essential to understanding the electrochemistry of transition metal complexes in both materials science and biological applications. However, such predictions have been complicated by the scarcity of gas phase experimental data, the relatively large size of the relevant molecules, and the presence of strong electron correlation effects. In this work, we apply all-electron phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) utilizing multideterminant trial wave functions to six metallocene complexes to compare the computed adiabatic and vertical ionization energies with experimental results. We find that ph-AFQMC yields mean absolute errors (MAEs) of 1.69 ± 1.02 kcal/mol for the adiabatic energies and 2.85 ± 1.13 kcal/mol for the vertical energies. We also carry out density functional theory (DFT) calculations using a variety of functionals, which yields MAEs of 3.62-6.98 kcal/mol and 3.31-9.88 kcal/mol, as well as one variant of localized coupled cluster calculations (DLPNO-CCSD(T0) with moderate PNO cutoffs), which has MAEs of 4.96 and 6.08 kcal/mol, respectively. We also test the reliability of DLPNO-CCSD(T0) and DFT on acetylacetonate (acac) complexes for adiabatic energies measured in the same manner experimentally, and we find higher MAEs, ranging from 4.56 to 10.99 kcal/mol (with a different ordering) for DFT and 6.97 kcal/mol for DLPNO-CCSD(T0). Finally, by utilizing experimental solvation energies, we show that accurate reduction potentials in solution for the metallocene series can be obtained from the AFQMC gas phase results.

16.
J Chem Theory Comput ; 16(5): 3041-3054, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32293882

RESUMO

Transition-metal complexes are ubiquitous in biology and chemical catalysis, yet they remain difficult to accurately describe with ab initio methods because of the presence of a large degree of dynamic electron correlation, and, in some cases, strong static correlation which results from a manifold of low-lying states. Progress has been hindered by a scarcity of high-quality gas-phase experimental data, while exact ab initio predictions are usually computationally unaffordable because of the large size of the relevant complexes. In this work, we present a data set of 34 tetrahedral, square planar, and octahedral 3d metal-containing complexes with gas-phase ligand-dissociation energies that have reported uncertainties of ≤2 kcal/mol. We perform all-electron phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) calculations utilizing multideterminant trial wave functions selected by a black box procedure. We compare the results with those from the density functional theory (DFT) with the B3LYP, B97, M06, PBE0, ωB97X-V, and DSD-PBEP86/2013 functionals and a localized orbital variant of the coupled cluster theory with single, double, and perturbative triple excitations (DLPNO-CCSD(T)). We find mean averaged errors of 1.07 ± 0.27 kcal/mol for our most sophisticated ph-AFQMC approach versus 2.81 kcal/mol for DLPNO-CCSD(T) and 1.49-3.78 kcal/mol for DFT. We find maximum errors of 2.96 ± 1.71 kcal/mol for our best ph-AFQMC method versus 9.15 kcal/mol for DLPNO-CCSD(T) and 5.98-13.69 kcal/mol for DFT. The reasonable performance of a number of DFT functionals is in stark contrast to the much poorer accuracy previously demonstrated for diatomic species, suggesting a moderation in electron correlation because of ligand coordination in most cases. However, the unpredictably large errors for a small subset of cases with both DFT and DLPNO-CCSD(T) methods leave cause for concern, especially in light of the unreliability of common multireference indicators. In contrast, the robust and, in principle, systematically improvable results of ph-AFQMC for these realistic complexes establish the method as a useful tool for elucidating the electronic structure of transition-metal-containing complexes and predicting their gas-phase properties.

17.
J Chem Theory Comput ; 16(4): 2109-2123, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32150400

RESUMO

Density functional theory (DFT) is known to often fail when calculating thermodynamic values, such as ionization potentials (IPs), due to nondynamical error (i.e., the self-interaction term). Localized orbital corrections (LOCs), derived from assigning corresponding corrections for the atomic orbitals, bonds, and paired and unpaired electrons, are utilized to correct the IPs calculated from DFT. Some of the assigned parameters, which are physically due to the contraction of and change of the environment around a bond, depend on identifying the location in the molecule from which the electron is removed using differences in the charge density between neutral and oxidized species. In our training set, various small organic and inorganic molecules from the literature with the reported experimental IP were collected using the NIST database. For certain molecules with uncertain or no experimental measurements, we obtain the IP using coupled cluster theory and auxiliary field quantum Monte Carlo. After applying these corrections, as generated by least-squares regression, LOC reduces the mean absolute deviation (MAD) of the training set from 0.143 to 0.046 eV (R2 = 0.895), and LOC reduces the MAD of the test set from 0.192 to 0.097 eV (R2 = 0.833).

18.
J Chem Theory Comput ; 15(4): 2346-2358, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30883110

RESUMO

The bond dissociation energies of a set of 44 3 d transition metal-containing diatomics are computed with phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) utilizing a correlated sampling technique. We investigate molecules with H, N, O, F, Cl, and S ligands, including those in the 3dMLBE20 database first compiled by Truhlar and co-workers with calculated and experimental values that have since been revised by various groups. In order to make a direct comparison of the accuracy of our ph-AFQMC calculations with previously published results from 10 DFT functionals, CCSD(T), and icMR-CCSD(T), we establish an objective selection protocol which utilizes the most recent experimental results except for a few cases with well-specified discrepancies. With the remaining set of 41 molecules, we find that ph-AFQMC gives robust agreement with experiment superior to that of all other methods, with a mean absolute error (MAE) of 1.4(4) kcal/mol and maximum error of 3(3) kcal/mol (parentheses account for reported experimental uncertainties and the statistical errors of our ph-AFQMC calculations). In comparison, CCSD(T) and B97, the best performing DFT functional considered here, have MAEs of 2.8 and 3.7 kcal/mol, respectively, and maximum errors in excess of 17 kcal/mol (for the CoS diatomic). While a larger and more diverse data set would be required to demonstrate that ph-AFQMC is truly a benchmark method for transition metal systems, our results indicate that the method has tremendous potential, exhibiting unprecedented consistency and accuracy compared to other approximate quantum chemical approaches.

19.
J Phys Chem Lett ; 9(2): 406-412, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29227669

RESUMO

A combination of time-resolved vibrational spectroscopy and density functional theory techniques have been applied to study the vibrational energy relaxation dynamics of the Re(4,4'-dicyano-2,2'-bipyridine)(CO)3Cl (Re(CO)3Cl) catalyst for CO2 to CO conversion bound to gold surfaces. The kinetics of vibrational relaxation exhibits a biexponential decay including an ultrafast initial relaxation and complete recovery of the ground vibrational state. Ab initio molecular dynamics simulations and time-dependent perturbation theory reveal the former to be due to vibrational population exchange between CO stretching modes and the latter to be a combination of intramolecular vibrational relaxation (IVR) and electron-hole pair (EHP)-induced energy transfer into the gold substrate. EHP-induced energy transfer from the Re(CO)3Cl adsorbate into the gold surface occurs on the same time scale as IVR of Re(CO)3Cl in aprotic solvents. Therefore, it is expected to be particularly relevant to understanding the reduced catalytic activity of the homogeneous catalyst when anchored to a metal surface.

20.
Photochem Photobiol ; 93(2): 626-631, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28052331

RESUMO

Hyperforin is a constituent of St. John's wort and coexists with the singlet oxygen sensitizer hypericin. Density functional theory, molecular mechanics and Connolly surface calculations show that accessibility in the singlet oxygen "ene" reaction favors the hyperforin "southwest" and "southeast" prenyl (2-methyl-2-butenyl) groups over the northern prenyl groups. While the southern part of hyperforin is initially more susceptible to oxidation, up to 4 "ene" reactions of singlet oxygen can take place. Computational results assist in predicting the fate of adjacent hydroperoxides in hyperforin, where the loss of hydrogen atoms may lead to the formation of a hydrotrioxide and a carbonyl instead of a Russell reaction.


Assuntos
Produtos Biológicos/química , Floroglucinol/análogos & derivados , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Terpenos/química , Peróxido de Hidrogênio/química , Floroglucinol/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa