Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 46(9): 2247-59, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27334749

RESUMO

T-cell polyspecificity, predicting that individual T cells recognize a continuum of related ligands, implies that multiple antigens can tolerize T cells specific for a given self-antigen. We previously showed in C57BL/6 mice that part of the CD4(+) T-cell repertoire specific for myelin oligodendrocyte glycoprotein (MOG) 35-55 also recognizes the neuronal antigen neurofilament medium (NF-M) 15-35. Such bi-specific CD4(+) T cells are frequent and produce inflammatory cytokines after stimulation. Since T cells recognizing two self-antigens would be expected to be tolerized more efficiently, this finding prompted us to study how polyspecificity impacts tolerance. We found that similar to MOG, NF-M is expressed in the thymus by medullary thymic epithelial cells, a tolerogenic population. Nevertheless, the frequency, phenotype, and capacity to transfer experimental autoimmune encephalomyelitis (EAE) of MOG35-55 -reactive CD4(+) T cells were increased in MOG-deficient but not in NF-M-deficient mice. We found that presentation of NF-M15-35 by I-A(b) on dendritic cells is of short duration, suggesting unstable MHC class II binding. Consistently, introducing an MHC-anchoring residue into NF-M15-35 (NF-M15-35 T20Y) increased its immunogenicity, activating a repertoire able to induce EAE. Our results show that in C57BL/6 mice bi-specific encephalitogenic T cells manage to escape tolerization due to inefficient exposure to two self-antigens.


Assuntos
Autoantígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Tolerância Imunológica , Proteínas da Mielina/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Neurônios/imunologia , Animais , Citocinas/biossíntese , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Expressão Gênica , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/genética , Proteínas de Neurofilamentos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T/genética , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Timo/imunologia , Timo/metabolismo
2.
J Endod ; 43(7): 1104-1110, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28527850

RESUMO

INTRODUCTION: The role of complement, especially through the C5a fragment, is well-known for the initiation of inflammation. Its involvement in regeneration has been shown more recently by the recruitment of mesenchymal stem cells. C5a can be produced locally by the pulp fibroblasts in response to injury or infection. This work aims to investigate the effect of different pulp capping biomaterials on complement activation and its possible influence on inflammatory and pulp stem cell recruitment. METHODS: Conditioned media were prepared from 3 pulp capping biomaterials: Biodentine (Septodont, Saint-Maur-des-Fosses, France), TheraCal (BISCO, Lançon De Provence, France), and Xeno III (Dentsply Sirona, Versaille, France). Injured pulp fibroblasts were cultured with these conditioned media to analyze C5a secretion using an enzyme-linked immunosorbent assay. Dental pulp stem cells (DPSCs) were isolated from human third molar explants by magnetic cell sorting with STRO-1 antibodies. The expression of C5a receptor on DPSCs and inflammatory (THP-1) cells was investigated by immunofluorescence. The migration of both DPSCs and THP-1 cells was studied in Boyden chambers. RESULTS: Pulp fibroblast production of C5a significantly increased when the cells were incubated with TheraCal- and Xeno III-conditioned media. The recruitment of cells involved in inflammation (THP-1 cells) was significantly reduced by Biodentine- and TheraCal-conditioned media, whereas the migration of DPSCs was reduced with TheraCal- and Xeno III-conditioned media but not with that of Biodentine. The involvement of C5a in cell recruitment is demonstrated with a C5a receptor-specific antagonist (W54011). CONCLUSIONS: After pulp injury, the pulp capping material affects complement activation and the balance between inflammation and regeneration through a differential recruitment of DPSCs or inflammatory cells.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Polpa Dentária/efeitos dos fármacos , Agentes de Capeamento da Polpa Dentária e Pulpectomia/farmacologia , Pulpite/metabolismo , Células-Tronco/metabolismo , Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Células Cultivadas , Capeamento da Polpa Dentária/métodos , Adesivos Dentinários/farmacologia , Combinação de Medicamentos , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Técnicas In Vitro , Óxidos/farmacologia , Silicatos/farmacologia , Células-Tronco/efeitos dos fármacos
3.
J Endod ; 42(9): 1377-84, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27497510

RESUMO

INTRODUCTION: Complement activation is considered a major mechanism in innate immunity. Although it is mainly involved in initiating inflammation, recent data reported its involvement in other processes such as tissue regeneration. In the dental pulp, complement C5a fragment has been shown to be involved in the recruitment of dental pulp stem cells (DPSCs). This study sought to investigate the possible role of C3a, another complement fragment, in the early steps of dentin-pulp regeneration. METHODS: Expression of C3a receptor (C3aR) was investigated by immunofluorescence and reverse transcriptase polymerase chain reaction on cultured pulp fibroblasts, STRO-1-sorted DPSCs, as well as on human tooth sections in vivo. The effect of C3a on proliferation of both DPSCs and pulp fibroblasts was investigated by MTT assay. Cell migration under a C3a gradient was investigated by using microfluidic chemotaxis chambers. RESULTS: C3aR was expressed in vivo as well as in cultured pulp fibroblasts co-expressing fibroblast surface protein and in DPSCs co-expressing STRO-1. Addition of recombinant C3a induced a significant proliferation of both cell types. When subjected to a C3a gradient, DPSCs were mobilized but not specifically recruited, whereas pulp fibroblasts were specifically recruited following a C3a gradient. CONCLUSIONS: These results provide the first demonstration of C3aR expression in the dental pulp and demonstrate that C3a is involved in increasing DPSCs and fibroblast proliferation, in mobilizing DPSCs, and in specifically guiding fibroblast recruitment. This provides an additional link to the tight correlation between inflammation and tissue regeneration.


Assuntos
Complemento C3a/fisiologia , Polpa Dentária/citologia , Fibroblastos/fisiologia , Células-Tronco/fisiologia , Antígenos de Superfície/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Polpa Dentária/fisiologia , Imunofluorescência , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa