Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38569889

RESUMO

SUMMARY: Segmentation of neural somata is a crucial and usually the most time-consuming step in the analysis of optical functional imaging of neuronal microcircuits. In recent years, multiple auto-segmentation tools have been developed to improve the speed and consistency of the segmentation process, mostly, using deep learning approaches. Current segmentation tools, while advanced, still encounter challenges in producing accurate segmentation results, especially in datasets with a low signal-to-noise ratio. This has led to a reliance on manual segmentation techniques. However, manual methods, while customized to specific laboratory protocols, can introduce variability due to individual differences in interpretation, potentially affecting dataset consistency across studies. In response to this challenge, we present ViNe-Seg: a deep-learning-based semi-automatic segmentation tool that offers (i) detection of visible neurons, irrespective of their activity status; (ii) the ability to perform segmentation during an ongoing experiment; (iii) a user-friendly graphical interface that facilitates expert supervision, ensuring precise identification of Regions of Interest; (iv) an array of segmentation models with the option of training custom models and sharing them with the community; and (v) seamless integration of subsequent analysis steps. AVAILABILITY AND IMPLEMENTATION: ViNe-Seg code and documentation are publicly available at https://github.com/NiRuff/ViNe-Seg and can be installed from https://pypi.org/project/ViNeSeg/.

2.
Mol Psychiatry ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649752

RESUMO

Chronic stress has become a predominant factor associated with a variety of psychiatric disorders, such as depression and anxiety, in both human and animal models. Although multiple studies have looked at transcriptional changes after social defeat stress, these studies primarily focus on bulk tissues, which might dilute important molecular signatures of social interaction in activated cells. In this study, we employed the Arc-GFP mouse model in conjunction with chronic social defeat (CSD) to selectively isolate activated nuclei (AN) populations in the ventral hippocampus (vHIP) and prefrontal cortex (PFC) of resilient and susceptible animals. Nuclear RNA-seq of susceptible vs. resilient populations revealed distinct transcriptional profiles linked predominantly with neuronal and synaptic regulation mechanisms. In the vHIP, susceptible AN exhibited increased expression of genes related to the cytoskeleton and synaptic organization. At the same time, resilient AN showed upregulation of cell adhesion genes and differential expression of major glutamatergic subunits. In the PFC, susceptible mice exhibited upregulation of synaptotagmins and immediate early genes (IEGs), suggesting a potentially over-amplified neuronal activity state. Our findings provide a novel view of stress-exposed neuronal activation and the molecular response mechanisms in stress-susceptible vs. resilient animals, which may have important implications for understanding mental resilience.

3.
Mol Psychiatry ; 29(5): 1427-1439, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38287100

RESUMO

One mechanism of particular interest to regulate mRNA fate post-transcriptionally is mRNA modification. Especially the extent of m1A mRNA methylation is highly discussed due to methodological differences. However, one single m1A site in mitochondrial ND5 mRNA was unanimously reported by different groups. ND5 is a subunit of complex I of the respiratory chain. It is considered essential for the coupling of oxidation and proton transport. Here we demonstrate that this m1A site might be involved in the pathophysiology of Alzheimer's disease (AD). One of the pathological hallmarks of this neurodegenerative disease is mitochondrial dysfunction, mainly induced by Amyloid ß (Aß). Aß mainly disturbs functions of complex I and IV of the respiratory chain. However, the molecular mechanism of complex I dysfunction is still not fully understood. We found enhanced m1A methylation of ND5 mRNA in an AD cell model as well as in AD patients. Formation of this m1A methylation is catalyzed by increased TRMT10C protein levels, leading to translation repression of ND5. As a consequence, here demonstrated for the first time, TRMT10C induced m1A methylation of ND5 mRNA leads to mitochondrial dysfunction. Our findings suggest that this newly identified mechanism might be involved in Aß-induced mitochondrial dysfunction.


Assuntos
Adenosina , Doença de Alzheimer , Peptídeos beta-Amiloides , Complexo I de Transporte de Elétrons , Mitocôndrias , RNA Mensageiro , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Mitocôndrias/metabolismo , Metilação , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Peptídeos beta-Amiloides/metabolismo , Masculino , Feminino , Idoso , Metiltransferases/metabolismo , Metiltransferases/genética , Idoso de 80 Anos ou mais , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética
4.
Bioinformatics ; 37(21): 3972-3973, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34601559

RESUMO

SUMMARY: The IntelliCage systems offer the possibility to conduct long-term behavioral experiments on mice in social groups without human intervention. Although this setup provides new findings, only about 150 studies with the IntelliCage system have been published in the last two decades, which is also caused by the challenging problems of processing and handling the large and heterogeneous amounts of captured data. This application note introduces the Python-GUI IntelliPy, especially designed for users not very experienced in using programming languages. IntelliPy allows users to quickly analyze the IntelliCage output in a user-friendly way, thus making the systems more accessible to a broader audience. AVAILABILITY AND IMPLEMENTATION: https://github.com/NiRuff/IntelliPy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Linguagens de Programação , Software , Animais , Camundongos , Humanos
5.
Front Aging Neurosci ; 14: 866886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832065

RESUMO

The common features of all neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease, are the accumulation of aggregated and misfolded proteins and the progressive loss of neurons, leading to cognitive decline and locomotive dysfunction. Still, they differ in their ultimate manifestation, the affected brain region, and the kind of proteinopathy. In the last decades, a vast number of processes have been described as associated with neurodegenerative diseases, making it increasingly harder to keep an overview of the big picture forming from all those data. In this meta-study, we analyzed genomic, transcriptomic, proteomic, and epigenomic data of the aforementioned diseases using the data of 234 studies in a network-based approach to study significant general coherences but also specific processes in individual diseases or omics levels. In the analysis part, we focus on only some of the emerging findings, but trust that the meta-study provided here will be a valuable resource for various other researchers focusing on specific processes or genes contributing to the development of neurodegeneration.

6.
Sci Rep ; 11(1): 6649, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758244

RESUMO

Aberrant activity of local functional networks underlies memory and cognition deficits in Alzheimer's disease (AD). Hyperactivity was observed in microcircuits of mice AD-models showing plaques, and also recently in early stage AD mutants prior to amyloid deposition. However, early functional effects of AD on cortical microcircuits remain unresolved. Using two-photon calcium imaging, we found altered temporal distributions (burstiness) in the spontaneous activity of layer II/III visual cortex neurons, in a mouse model of familial Alzheimer's disease (5xFAD), before plaque formation. Graph theory (GT) measures revealed a distinct network topology of 5xFAD microcircuits, as compared to healthy controls, suggesting degradation of parameters related to network robustness. After treatment with acitretin, we observed a re-balancing of those network measures in 5xFAD mice; particularly in the mean degree distribution, related to network development and resilience, and post-treatment values resembled those of age-matched controls. Further, behavioral deficits, and the increase of excitatory synapse numbers in layer II/III were reversed after treatment. GT is widely applied for whole-brain network analysis in human neuroimaging, we here demonstrate the translational value of GT as a multi-level tool, to probe networks at different levels in order to assess treatments, explore mechanisms, and contribute to early diagnosis.


Assuntos
Acitretina/farmacologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Vias Neurais/efeitos dos fármacos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Ondas Encefálicas , Cálcio/metabolismo , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Imagem Óptica , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Agregação Patológica de Proteínas , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
7.
Cells ; 9(12)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302607

RESUMO

Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are heterogeneous, progressive diseases with frequently overlapping symptoms characterized by a loss of neurons. Studies have suggested relations between neurodegenerative diseases for many years (e.g., regarding the aggregation of toxic proteins or triggering endogenous cell death pathways). We gathered publicly available genomic, transcriptomic, and proteomic data from 177 studies and more than one million patients to detect shared genetic patterns between the neurodegenerative diseases on three analyzed omics-layers. The results show a remarkably high number of shared differentially expressed genes between the transcriptomic and proteomic levels for all conditions, while showing a significant relation between genomic and proteomic data between AD and PD and AD and ALS. We identified a set of 139 genes being differentially expressed in several transcriptomic experiments of all four diseases. These 139 genes showed overrepresented gene ontology (GO) Terms involved in the development of neurodegeneration, such as response to heat and hypoxia, positive regulation of cytokines and angiogenesis, and RNA catabolic process. Furthermore, the four analyzed neurodegenerative diseases (NDDs) were clustered by their mean direction of regulation throughout all transcriptomic studies for this set of 139 genes, with the closest relation regarding this common gene set seen between AD and HD. GO-Term and pathway analysis of the proteomic overlap led to biological processes (BPs), related to protein folding and humoral immune response. Taken together, we could confirm the existence of many relations between Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis on transcriptomic and proteomic levels by analyzing the pathways and GO-Terms arising in these intersections. The significance of the connection and the striking relation of the results to processes leading to neurodegeneration between the transcriptomic and proteomic data for all four analyzed neurodegenerative diseases showed that exploring many studies simultaneously, including multiple omics-layers of different neurodegenerative diseases simultaneously, holds new relevant insights that do not emerge from analyzing these data separately. Furthermore, the results shed light on processes like the humoral immune response that have previously been described only for certain diseases. Our data therefore suggest human patients with neurodegenerative diseases should be addressed as complex biological systems by integrating multiple underlying data sources.


Assuntos
Genômica , Doenças Neurodegenerativas/metabolismo , Proteômica , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Bases de Dados Factuais , Ontologia Genética , Estudo de Associação Genômica Ampla , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Imunidade Humoral , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Polimorfismo de Nucleotídeo Único , Proteoma/análise , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa