Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(15): 153601, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682988

RESUMO

The manipulation of quantum many-body systems is a crucial goal in quantum science. Entangled quantum states that are symmetric under qubits permutation are of growing interest. Yet, the creation and control of symmetric states has remained a challenge. Here, we introduce a method to universally control symmetric states, proposing a scheme that relies solely on coherent rotations and spin squeezing. We present protocols for the creation of different symmetric states including Schrödinger's cat and Gottesman-Kitaev-Preskill states. The obtained symmetric states can be transferred to traveling photonic states via spontaneous emission, providing a powerful approach for engineering desired quantum photonic states.

2.
Nano Lett ; 23(3): 779-787, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36689300

RESUMO

We analyze the interaction between a free electron and an ensemble of identical optical emitters. The mutual coherence and correlations between the emitters can enhance the interaction with each electron and become imprinted on its energy spectrum. We present schemes by which such collective interactions can be realized. As a possible application, we investigate free-electron interactions with superradiant systems, showing how electrons can probe the ultrafast population dynamics of superradiance.

3.
Phys Rev Lett ; 126(23): 233403, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170167

RESUMO

Free electrons provide a powerful tool for probing material properties at atomic resolution. Recent advances in ultrafast electron microscopy enable the manipulation of free-electron wave functions using laser pulses. It would be of great importance if one could combine the spatial resolution of electron microscopes with the ability of laser pulses to probe coherent phenomena in quantum systems. To this end, we propose a novel concept that leverages free electrons that are coherently shaped by laser pulses to measure quantum coherence in materials. We develop the quantum theory of interactions between shaped electrons and arbitrary qubit states in materials, and show how the postinteraction electron energy spectrum enables measuring the qubit state (on the Bloch sphere) and the decoherence or relaxation times (T_{2}/T_{1}). Finally, we describe how such electrons can detect and quantify superradiance from multiple qubits. Our scheme can be implemented in ultrafast transmission electron microscopes (UTEM), opening the way toward the full characterization of the state of quantum systems at atomic resolution.

4.
Sci Adv ; 9(51): eadi5729, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134276

RESUMO

The complex range of interactions between electrons and electromagnetic fields gave rise to countless scientific and technological advances. A prime example is photon-induced nearfield electron microscopy (PINEM), enabling the detection of confined electric fields in illuminated nanostructures with unprecedented spatial resolution. However, PINEM is limited by its dependence on strong fields, making it unsuitable for sensitive samples, and its inability to resolve complex phasor information. Here, we leverage the nonlinear, overconstrained nature of PINEM to present an algorithmic microscopy approach, achieving far superior nearfield imaging capabilities. Our algorithm relies on free-electron Ramsey-type interferometry to produce orders-of-magnitude improvement in sensitivity and ambiguity-immune nearfield phase reconstruction, both of which are optimal when the electron exhibits a fully quantum behavior. Our results demonstrate the potential of combining algorithmic approaches with state-of-the-art modalities in electron microscopy and may lead to various applications from imaging sensitive biological samples to performing full-field tomography of confined light.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa