Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 19(1): 235, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29929475

RESUMO

BACKGROUND: In the rational drug design process, an ensemble of conformations obtained from a molecular dynamics simulation plays a crucial role in docking experiments. Some studies have found that Fully-Flexible Receptor (FFR) models predict realistic binding energy accurately and improve scoring to enhance selectiveness. At the same time, methods have been proposed to reduce the high computational costs involved in considering the explicit flexibility of proteins in receptor-ligand docking. This study introduces a novel method to optimize ensemble docking-based experiments by reducing the size of an InhA FFR model at docking runtime and scaling docking workflow invocations on cloud virtual machines. RESULTS: First, in order to find the most affordable cost-benefit pool of virtual machines, we evaluated the performance of the docking workflow invocations in different configurations of Azure instances. Second, we validated the gains obtained by the proposed method based on the quality of the Reduced Fully-Flexible Receptor (RFFR) models produced using AutoDock4.2. The analyses show that the proposed method reduced the model size by approximately 50% while covering at least 86% of the best docking results from the 74 ligands tested. Third, we tested our novel method using AutoDock Vina, a different docking software, and showed the positive accuracy achieved in the resulting RFFR models. Finally, our results demonstrated that the method proposed optimized ensemble docking experiments and is applicable to different docking software. In addition, it detected new binding modes, which would be unreachable if employing only the rigid structure used to generate the InhA FFR model. CONCLUSIONS: Our results showed that the selective method is a valuable strategy for optimizing ensemble docking-based experiments using different docking software. The RFFR models produced by discarding non-promising snapshots from the original model are accurately shaped for a larger number of ligands, and the elapsed time spent in the ensemble docking experiments are considerably reduced.


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular/métodos
2.
BMC Genomics ; 14 Suppl 6: S6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24564276

RESUMO

BACKGROUND: Data preprocessing is a major step in data mining. In data preprocessing, several known techniques can be applied, or new ones developed, to improve data quality such that the mining results become more accurate and intelligible. Bioinformatics is one area with a high demand for generation of comprehensive models from large datasets. In this article, we propose a context-based data preprocessing approach to mine data from molecular docking simulation results. The test cases used a fully-flexible receptor (FFR) model of Mycobacterium tuberculosis InhA enzyme (FFR_InhA) and four different ligands. RESULTS: We generated an initial set of attributes as well as their respective instances. To improve this initial set, we applied two selection strategies. The first was based on our context-based approach while the second used the CFS (Correlation-based Feature Selection) machine learning algorithm. Additionally, we produced an extra dataset containing features selected by combining our context strategy and the CFS algorithm. To demonstrate the effectiveness of the proposed method, we evaluated its performance based on various predictive (RMSE, MAE, Correlation, and Nodes) and context (Precision, Recall and FScore) measures. CONCLUSIONS: Statistical analysis of the results shows that the proposed context-based data preprocessing approach significantly improves predictive and context measures and outperforms the CFS algorithm. Context-based data preprocessing improves mining results by producing superior interpretable models, which makes it well-suited for practical applications in molecular docking simulations using FFR models.


Assuntos
Processamento Eletrônico de Dados/métodos , Simulação de Acoplamento Molecular/métodos , Algoritmos , Ligantes , Mycobacterium tuberculosis/enzimologia , Termodinâmica
3.
BMC Bioinformatics ; 13: 310, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23171000

RESUMO

BACKGROUND: This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. RESULTS: The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. CONCLUSIONS: We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.


Assuntos
Algoritmos , Antituberculosos/química , Proteínas de Bactérias/química , Árvores de Decisões , Desenho de Fármacos , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Oxirredutases/química , Biologia Computacional , Evolução Molecular Direcionada , Entropia , Ligantes , Conformação Molecular , Ligação Proteica
4.
BMC Genomics ; 12 Suppl 4: S6, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22369186

RESUMO

BACKGROUND: In silico molecular docking is an essential step in modern drug discovery when driven by a well defined macromolecular target. Hence, the process is called structure-based or rational drug design (RDD). In the docking step of RDD the macromolecule or receptor is usually considered a rigid body. However, we know from biology that macromolecules such as enzymes and membrane receptors are inherently flexible. Accounting for this flexibility in molecular docking experiments is not trivial. One possibility, which we call a fully-flexible receptor model, is to use a molecular dynamics simulation trajectory of the receptor to simulate its explicit flexibility. To benefit from this concept, which has been known since 2000, it is essential to develop and improve new tools that enable molecular docking simulations of fully-flexible receptor models. RESULTS: We have developed a Flexible-Receptor Docking Workflow System (FReDoWS) to automate molecular docking simulations using a fully-flexible receptor model. In addition, it includes a snapshot selection feature to facilitate acceleration the virtual screening of ligands for well defined disease targets. FReDoWS usefulness is demonstrated by investigating the docking of four different ligands to flexible models of Mycobacterium tuberculosis' wild type InhA enzyme and mutants I21V and I16T. We find that all four ligands bind effectively to this receptor as expected from the literature on similar, but wet experiments. CONCLUSIONS: A work that would usually need the manual execution of many computer programs, and the manipulation of thousands of files, was efficiently and automatically performed by FReDoWS. Its friendly interface allows the user to change the docking and execution parameters. Besides, the snapshot selection feature allowed the acceleration of docking simulations. We expect FReDoWS to help us explore more of the role flexibility plays in receptor-ligand interactions. FReDoWS can be made available upon request to the authors.


Assuntos
Simulação de Dinâmica Molecular , Software , Automação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desenho de Fármacos , Ligantes , Mutação , Mycobacterium tuberculosis/enzimologia , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo
5.
Front Comput Neurosci ; 15: 594659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566613

RESUMO

Problem: Brain imaging studies of mental health and neurodevelopmental disorders have recently included machine learning approaches to identify patients based solely on their brain activation. The goal is to identify brain-related features that generalize from smaller samples of data to larger ones; in the case of neurodevelopmental disorders, finding these patterns can help understand differences in brain function and development that underpin early signs of risk for developmental dyslexia. The success of machine learning classification algorithms on neurofunctional data has been limited to typically homogeneous data sets of few dozens of participants. More recently, larger brain imaging data sets have allowed for deep learning techniques to classify brain states and clinical groups solely from neurofunctional features. Indeed, deep learning techniques can provide helpful tools for classification in healthcare applications, including classification of structural 3D brain images. The adoption of deep learning approaches allows for incremental improvements in classification performance of larger functional brain imaging data sets, but still lacks diagnostic insights about the underlying brain mechanisms associated with disorders; moreover, a related challenge involves providing more clinically-relevant explanations from the neural features that inform classification. Methods: We target this challenge by leveraging two network visualization techniques in convolutional neural network layers responsible for learning high-level features. Using such techniques, we are able to provide meaningful images for expert-backed insights into the condition being classified. We address this challenge using a dataset that includes children diagnosed with developmental dyslexia, and typical reader children. Results: Our results show accurate classification of developmental dyslexia (94.8%) from the brain imaging alone, while providing automatic visualizations of the features involved that match contemporary neuroscientific knowledge (brain regions involved in the reading process for the dyslexic reader group and brain regions associated with strategic control and attention processes for the typical reader group). Conclusions: Our visual explanations of deep learning models turn the accurate yet opaque conclusions from the models into evidence to the condition being studied.

6.
BMC Genomics ; 11 Suppl 5: S6, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21210972

RESUMO

BACKGROUND: Molecular docking simulation is the Rational Drug Design (RDD) step that investigates the affinity between protein receptors and ligands. Typically, molecular docking algorithms consider receptors as rigid bodies. Receptors are, however, intrinsically flexible in the cellular environment. The use of a time series of receptor conformations is an approach to explore its flexibility in molecular docking computer simulations, but it is extensively time-consuming. Hence, selection of the most promising conformations can accelerate docking experiments and, consequently, the RDD efforts. RESULTS: We previously docked four ligands (NADH, TCL, PIF and ETH) to 3,100 conformations of the InhA receptor from M. tuberculosis. Based on the receptor residues-ligand distances we preprocessed all docking results to generate appropriate input to mine data. Data preprocessing was done by calculating the shortest interatomic distances between the ligand and the receptor's residues for each docking result. They were the predictive attributes. The target attribute was the estimated free-energy of binding (FEB) value calculated by the AutodDock3.0.5 software. The mining inputs were submitted to the M5P model tree algorithm. It resulted in short and understandable trees. On the basis of the correlation values, for NADH, TCL and PIF we obtained more than 95% correlation while for ETH, only about 60%. Post processing the generated model trees for each of its linear models (LMs), we calculated the average FEB for their associated instances. From these values we considered a LM as representative if its average FEB was smaller than or equal the average FEB of the test set. The instances in the selected LMs were considered the most promising snapshots. It totalized 1,521, 1,780, 2,085 and 902 snapshots, for NADH, TCL, PIF and ETH respectively. CONCLUSIONS: By post processing the generated model trees we were able to propose a criterion of selection of linear models which, in turn, is capable of selecting a set of promising receptor conformations. As future work we intend to go further and use these results to elaborate a strategy to preprocess the receptors 3-D spatial conformation in order to predict FEB values. Besides, we intend to select other compounds, among the million catalogued, that may be promising as new drug candidates for our particular protein receptor target.


Assuntos
Algoritmos , Proteínas de Bactérias/metabolismo , Desenho de Fármacos , Modelos Moleculares , Oxirredutases/metabolismo , Conformação Proteica , Ligantes , Modelos Lineares , Simulação de Dinâmica Molecular
7.
PLoS One ; 10(7): e0133172, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26218832

RESUMO

Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward's, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill biologically relevant information from MD trajectories, especially for docking purposes.


Assuntos
Algoritmos , Proteínas de Bactérias/química , Análise por Conglomerados , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Oxirredutases/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , NAD/química , NAD/metabolismo , Oxirredutases/metabolismo , Conformação Proteica
8.
Comput Intell Neurosci ; 2015: 916240, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25873944

RESUMO

Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.


Assuntos
Algoritmos , Inteligência Artificial , Simulação de Dinâmica Molecular , Análise por Conglomerados , Ligantes , Proteínas/química , Software
9.
Biomed Res Int ; 2013: 469363, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691504

RESUMO

Molecular docking simulations of fully flexible protein receptor (FFR) models are coming of age. In our studies, an FFR model is represented by a series of different conformations derived from a molecular dynamic simulation trajectory of the receptor. For each conformation in the FFR model, a docking simulation is executed and analyzed. An important challenge is to perform virtual screening of millions of ligands using an FFR model in a sequential mode since it can become computationally very demanding. In this paper, we propose a cloud-based web environment, called web Flexible Receptor Docking Workflow (wFReDoW), which reduces the CPU time in the molecular docking simulations of FFR models to small molecules. It is based on the new workflow data pattern called self-adaptive multiple instances (P-SaMIs) and on a middleware built on Amazon EC2 instances. P-SaMI reduces the number of molecular docking simulations while the middleware speeds up the docking experiments using a High Performance Computing (HPC) environment on the cloud. The experimental results show a reduction in the total elapsed time of docking experiments and the quality of the new reduced receptor models produced by discarding the nonpromising conformations from an FFR model ruled by the P-SaMI data pattern.


Assuntos
Algoritmos , Internet , Simulação de Acoplamento Molecular , Receptores de Superfície Celular/química , Proteínas de Bactérias/química , Mycobacterium tuberculosis/enzimologia , Oxirredutases/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa