Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Kidney Int ; 106(1): 67-84, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38428734

RESUMO

Parietal epithelial cells (PECs) are kidney progenitor cells with similarities to a bone marrow stem cell niche. In focal segmental glomerulosclerosis (FSGS) PECs become activated and contribute to extracellular matrix deposition. Colony stimulating factor-1 (CSF-1), a hematopoietic growth factor, acts via its specific receptor, CSF-1R, and has been implicated in several glomerular diseases, although its role on PEC activation is unknown. Here, we found that CSF-1R was upregulated in PECs and podocytes in biopsies from patients with FSGS. Through in vitro studies, PECs were found to constitutively express CSF-1R. Incubation with CSF-1 induced CSF-1R upregulation and significant transcriptional regulation of genes involved in pathways associated with PEC activation. Specifically, CSF-1/CSF-1R activated the ERK1/2 signaling pathway and upregulated CD44 in PECs, while both ERK and CSF-1R inhibitors reduced CD44 expression. Functional studies showed that CSF-1 induced PEC proliferation and migration, while reducing the differentiation of PECs into podocytes. These results were validated in the Adriamycin-induced FSGS experimental mouse model. Importantly, treatment with either the CSF-1R-specific inhibitor GW2580 or Ki20227 provided a robust therapeutic effect. Thus, we provide evidence of the role of the CSF-1/CSF-1R pathway in PEC activation in FSGS, paving the way for future clinical studies investigating the therapeutic effect of CSF-1R inhibitors on patients with FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal , Receptores de Hialuronatos , Fator Estimulador de Colônias de Macrófagos , Podócitos , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/genética , Animais , Humanos , Podócitos/metabolismo , Podócitos/patologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Camundongos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos dos fármacos , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Glomérulos Renais/patologia , Glomérulos Renais/metabolismo , Masculino , Modelos Animais de Doenças , Células Cultivadas , Feminino , Regulação para Cima , Movimento Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais , Camundongos Endogâmicos C57BL , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos
2.
J Pathol ; 261(3): 309-322, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37650295

RESUMO

Rapidly progressive/crescentic glomerulonephritis (RPGN/CGN) involves the formation of glomerular crescents by maladaptive differentiation of parietal epithelial cells that leads to rapid loss of renal function. The molecular mechanisms of crescent formation are poorly understood. Therefore, new insights into molecular mechanisms could identify alternative therapeutic targets for RPGN/CGN. Analysis of kidney biopsies from patients with RPGN revealed increased interstitial, glomerular, and tubular expression of STING1, an accessory protein of the c-GAS-dependent DNA-sensing pathway, which was also observed in murine nephrotoxic nephritis induced by an anti-GBM antibody. STING1 was expressed by key cell types involved in RPGN and crescent formation such as glomerular parietal epithelial cells, and tubular cells as well as by inflammation accessory cells. In functional in vivo studies, Sting1-/- mice with nephrotoxic nephritis had lower kidney cytokine expression, milder kidney infiltration by innate and adaptive immune cells, and decreased disease severity. Pharmacological STING1 inhibition mirrored these findings. Direct STING1 agonism in parietal and tubular cells activated the NF-κB-dependent cytokine response and the interferon-induced genes (ISGs) program. These responses were also triggered in a STING1-dependent manner by the pro-inflammatory cytokine TWEAK. These results identify STING1 activation as a pathological mechanism in RPGN/CGN and TWEAK as an activator of STING1. Pharmacological strategies targeting STING1, or upstream regulators may therefore be potential alternatives to treat RPGN. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Glomerulonefrite , Nefrite , Humanos , Camundongos , Animais , Glomerulonefrite/genética , Rim/patologia , Glomérulos Renais/patologia , Doença Aguda , Citocinas/metabolismo
3.
J Pathol ; 261(2): 169-183, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37555366

RESUMO

Intravascular hemolysis is a common feature of different clinical entities, including sickle cell disease and malaria. Chronic hemolytic disorders are associated with hepatic damage; however, it is unknown whether heme disturbs lipid metabolism and promotes liver steatosis, thereby favoring the progression to nonalcoholic fatty liver disease (NAFLD). Using an experimental model of acute intravascular hemolysis, we report here the presence of liver injury in association with microvesicular lipid droplet deposition. Hemolysis promoted serum hyperlipidemia and altered intrahepatic triglyceride fatty acid composition, with increments in oleic, palmitoleic, and palmitic acids. These findings were related to augmented expression of transporters involved in fatty acid uptake (CD36 and MSR1) and deregulation of LDL transport, as demonstrated by decreased levels of LDL receptor and increased PCSK9 expression. Hemolysis also upregulated hepatic enzymes associated with cholesterol biosynthesis (SREBP2, HMGC1, LCAT, SOAT1) and transcription factors regulating lipid metabolism (SREBP1). Increased LC3II/LC3I ratio and p62/SQSTM1 protein levels were reported in mice with intravascular hemolysis and hepatocytes stimulated with heme, indicating a blockade of lipophagy. In cultured hepatocytes, cell pretreatment with the autophagy inductor rapamycin diminished heme-mediated toxicity and accumulation of lipid droplets. In conclusion, intravascular hemolysis enhances liver damage by exacerbating lipid accumulation and blocking the lipophagy pathway, thereby promoting NAFLD. These new findings have a high translational potential as a novel NAFLD-promoting mechanism in individuals suffering from severe hemolysis episodes. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Pró-Proteína Convertase 9/metabolismo , Metabolismo dos Lipídeos , Hemólise , Fígado/patologia , Hepatócitos/patologia , Ácidos Graxos/metabolismo , Autofagia , Heme/metabolismo , Camundongos Endogâmicos C57BL
4.
Kidney Int ; 103(2): 282-296, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36470394

RESUMO

Diabetic kidney disease (DKD) is one of the fastest growing causes of chronic kidney disease and associated morbidity and mortality. Preclinical research has demonstrated the involvement of inflammation in its pathogenesis and in the progression of kidney damage, supporting clinical trials designed to explore anti-inflammatory strategies. However, the recent success of sodium-glucose cotransporter-2 inhibitors and the nonsteroidal mineralocorticoid receptor antagonist finerenone has changed both guidelines and standard of care, rendering obsolete older studies directly targeting inflammatory mediators and the clinical development was discontinued for most anti-inflammatory drugs undergoing clinical trials for DKD in 2016. Given the contribution of inflammation to the pathogenesis of DKD, we review the impact on kidney inflammation of the current standard of care, therapies undergoing clinical trials, or repositioned drugs for DKD. Moreover, we review recent advances in the molecular regulation of inflammation in DKD and discuss potential novel therapeutic strategies with clinical relevance. Finally, we provide a road map for future research aimed at integrating the growing knowledge on inflammation and DKD into clinical practice to foster improvement of patient outcomes.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Diabetes Mellitus Tipo 2/complicações , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Insuficiência Renal Crônica/complicações , Inflamação/tratamento farmacológico , Inflamação/complicações
5.
Clin Sci (Lond) ; 137(17): 1409-1429, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655751

RESUMO

BACKGROUND: In chronic kidney disease (CKD), cardiovascular morbi-mortality is higher than in general population. Atherosclerotic cardiovascular disease is accelerated in CKD, but specific CKD-related risk factors for atherosclerosis are unknown. METHODS: CKD patients from the NEFRONA study were used. We performed mRNA array from blood of patients free from atheroma plaque at baseline, with (n=10) and without (n=10) de novo atherosclerotic plaque development 2 years later. Selected mRNA candidates were validated in a bigger sample (n=148). Validated candidates were investigated in vivo in an experimental model of CKD-accelerated atherosclerosis, and in vitro in murine macrophages. RESULTS: mRNA array analysis showed 92 up-regulated and 67 down-regulated mRNAs in samples from CKD patients with de novo plaque development. The functional analysis pointed to a paramount role of the immune response. The validation in a bigger sample confirmed that B- and T-lymphocyte co-inhibitory molecule (BTLA) down-regulation was associated with de novo plaque presence after 2 years. However, BTLA down-regulation was not found to be associated with atherosclerotic progression in patients with plaque already present at baseline. In a model of CKD-accelerated atherosclerosis, mRNA and protein expression levels of BTLA were significantly decreased in blood samples and atheroma plaques. Plaques from animals with CKD were bigger, had more infiltration of inflammatory cells, higher expression of IL6 and IL17 and less presence of collagen than plaques from control animals. Incubation of macrophages with rat uremic serum decreased BTLA expression. CONCLUSIONS: BTLA could be a potential biomarker or therapeutic target for atherosclerosis incidence in CKD patients.


Assuntos
Aterosclerose , Placa Aterosclerótica , Receptores Imunológicos , Animais , Humanos , Camundongos , Ratos , Aterosclerose/metabolismo , Regulação para Baixo , Macrófagos
6.
J Am Soc Nephrol ; 33(2): 357-373, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35046131

RESUMO

BACKGROUND: Receptor-interacting protein kinase 3 (RIPK3), a component of necroptosis pathways, may have an independent role in inflammation. It has been unclear which RIPK3-expressing cells are responsible for the anti-inflammatory effect of overall Ripk3 deficiency and whether Ripk3 deficiency protects against kidney inflammation occurring in the absence of tubular cell death. METHODS: We used chimeric mice with bone marrow from wild-type and Ripk3-knockout mice to explore RIPK3's contribution to kidney inflammation in the presence of folic acid-induced acute kidney injury AKI (FA-AKI) or absence of AKI and kidney cell death (as seen in systemic administration of the cytokine TNF-like weak inducer of apoptosis [TWEAK]). RESULTS: Tubular and interstitial cell RIPK3 expressions were increased in murine AKI. Ripk3 deficiency decreased NF-κB activation and kidney inflammation in FA-AKI but did not prevent kidney failure. In the chimeric mice, RIPK3-expressing bone marrow-derived cells were required for early inflammation in FA-AKI. The NLRP3 inflammasome was not involved in RIPK3's proinflammatory effect. Systemic TWEAK administration induced kidney inflammation in wild-type but not Ripk3-deficient mice. In cell cultures, TWEAK increased RIPK3 expression in bone marrow-derived macrophages and tubular cells. RIPK3 mediated TWEAK-induced NF-κB activation and inflammatory responses in bone marrow-derived macrophages and dendritic cells and in Jurkat T cells; however, in tubular cells, RIPK3 mediated only TWEAK-induced Il-6 expression. Furthermore, conditioned media from TWEAK-exposed wild-type macrophages, but not from Ripk3-deficient macrophages, promoted proinflammatory responses in cultured tubular cells. CONCLUSIONS: RIPK3 mediates kidney inflammation independently from tubular cell death. Specific targeting of bone marrow-derived RIPK3 may limit kidney inflammation without the potential adverse effects of systemic RIPK3 targeting.


Assuntos
Injúria Renal Aguda/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Medula Óssea/metabolismo , Citocina TWEAK/administração & dosagem , Modelos Animais de Doenças , Ácido Fólico/toxicidade , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Células Jurkat , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Quimeras de Transplante/metabolismo , Regulação para Cima
7.
Int J Mol Sci ; 24(9)2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175915

RESUMO

Cardiovascular disease (CVD) frequently complicates chronic kidney disease (CKD). The risk of all-cause mortality increases from 20% to 500% in patients who suffer both conditions; this is referred to as the so-called cardio-renal syndrome (CRS). Preclinical studies have described the key role of mitochondrial dysfunction in cardiovascular and renal diseases, suggesting that maintaining mitochondrial homeostasis is a promising therapeutic strategy for CRS. In this review, we explore the malfunction of mitochondrial homeostasis (mitochondrial biogenesis, dynamics, oxidative stress, and mitophagy) and how it contributes to the development and progression of the main vascular pathologies that could be affected by kidney injury and vice versa, and how this knowledge may guide the development of novel therapeutic strategies in CRS.


Assuntos
Síndrome Cardiorrenal , Insuficiência Renal Crônica , Humanos , Rim/metabolismo , Coração , Insuficiência Renal Crônica/metabolismo , Mitocôndrias
8.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982834

RESUMO

Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.


Assuntos
COVID-19 , Falência Renal Crônica , Peritonite , Insuficiência Renal Crônica , Humanos , Peritônio , Diálise Renal/efeitos adversos , COVID-19/complicações , Soluções para Diálise/efeitos adversos , Peritonite/induzido quimicamente , Insuficiência Renal Crônica/complicações , Inflamação/complicações , Falência Renal Crônica/terapia , Falência Renal Crônica/complicações , Imunidade
9.
Kidney Int ; 102(6): 1305-1319, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35921911

RESUMO

Chronic allograft dysfunction with progressive fibrosis of unknown cause remains a major issue after kidney transplantation, characterized by ischemia-reperfusion injury (IRI). One hypothesis to account for this is that spontaneous progressive tubulointerstitial fibrosis following IRI is driven by cellular senescence evolving from a prolonged, unresolved DNA damage response (DDR). Since cellular communication network factor 2 ((CCN2), formerly called connective tissue growth factor), an established mediator of kidney fibrosis, is also involved in senescence-associated pathways, we investigated the relation between CCN2 and cellular senescence following kidney transplantation. Tubular CCN2 overexpression was found to be associated with DDR, loss of kidney function and tubulointerstitial fibrosis in both the early and the late phase in human kidney allograft biopsies. Consistently, CCN2 deficient mice developed reduced senescence and tubulointerstitial fibrosis in the late phase; six weeks after experimental IRI. Moreover, tubular DDR markers and plasma urea were less elevated in CCN2 knockout than in wild-type mice. Finally, CCN2 administration or overexpression in epithelial cells induced upregulation of tubular senescence-associated genes including p21, while silencing of CCN2 alleviated DDR induced by anoxia-reoxygenation injury in cultured proximal tubule epithelial cells. Thus, our observations indicate that inhibition of CCN2 can mitigate IRI-induced acute kidney injury, DNA damage, and the subsequent DDR-senescence-fibrosis sequence. Hence, targeting CCN2 might help to protect the kidney from transplantation-associated post-IRI chronic kidney dysfunction.


Assuntos
Injúria Renal Aguda , Fator de Crescimento do Tecido Conjuntivo , Dano ao DNA , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibrose , Rim/patologia , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/patologia
10.
Am J Kidney Dis ; 80(2): 251-263, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34999158

RESUMO

Kidney fibrosis is a hallmark of chronic kidney disease (CKD) and a potential therapeutic target. However, there are conceptual and practical challenges to directly targeting kidney fibrosis. Whether fibrosis is mainly a cause or a consequence of CKD progression has been disputed. It is unclear whether specifically targeting fibrosis is feasible in clinical practice because most drugs that decrease fibrosis in preclinical models target additional and often multiple pathogenic pathways (eg, renin-angiotensin-aldosterone system blockade). Moreover, tools to assess whole-kidney fibrosis in routine clinical practice are lacking. Pirfenidone, a drug used for idiopathic pulmonary fibrosis, is undergoing a phase 2 trial for kidney fibrosis. Other drugs in use or being tested for idiopathic pulmonary fibrosis (eg, nintedanib, PRM-151, epigallocatechin gallate) are also potential candidates to treat kidney fibrosis. Novel therapeutic approaches may include antagomirs (eg, lademirsen) or drugs targeting interleukin 11 or NKD2 (WNT signaling pathway inhibitor). Reversing the dysfunctional tubular cell metabolism that leads to kidney fibrosis offers additional therapeutic opportunities. However, any future drug targeting fibrosis of the kidneys should demonstrate added benefit to a standard of care that combines renin-angiotensin system with mineralocorticoid receptor (eg, finerenone) blockade or with sodium/glucose cotransporter 2 inhibitors.


Assuntos
Fibrose Pulmonar Idiopática , Insuficiência Renal Crônica , Proteínas Adaptadoras de Transdução de Sinal , Antifibróticos , Proteínas de Ligação ao Cálcio , Fibrose , Humanos , Fibrose Pulmonar Idiopática/complicações , Insuficiência Renal Crônica/etiologia , Sistema Renina-Angiotensina
11.
FASEB J ; 35(1): e21213, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33368614

RESUMO

Preclinical studies have demonstrated that activation of the NOTCH pathway plays a key role in the pathogenesis of kidney damage. There is currently no information on the role of the Delta-like homologue 1 (DLK1), a NOTCH inhibitor, in the regulation of renal damage. Here, we investigated the contribution of DLK1 to experimental renal damage and the underlying molecular mechanisms. Using a Dlk1-null mouse model in the experimental renal damage of unilateral ureteral obstruction, we found activation of NOTCH, as shown by increased nuclear translocation of the NOTCH1 intracellular domain, and upregulation of Dlk2/hey-1 expression compared to wild-type (WT) littermates. NOTCH1 over-activation in Dlk1-null injured kidneys was associated with a higher inflammatory response, characterized by infiltration of inflammatory cells, mainly CD4/IL17A + lymphocytes, and activation of the Th17 immune response. Furthermore, pharmacological NOTCH blockade inhibited the transcription factors controlling Th17 differentiation and gene expression of the Th17 effector cytokine IL-17A and other related-inflammatory factors, linked to a diminution of inflammation in the injured kidneys. We propose that the non-canonical NOTCH ligand DLK1 acts as a NOTCH antagonist in renal injury regulating the Th17-mediated inflammatory response.


Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Deleção de Genes , Imunidade Celular , Nefropatias/imunologia , Rim/imunologia , Células Th17/imunologia , Animais , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Camundongos , Células Th17/patologia , Obstrução Ureteral/genética , Obstrução Ureteral/imunologia , Obstrução Ureteral/patologia
12.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499730

RESUMO

Cellular communication network factor 2 (CCN2/CTGF) has been traditionally described as a downstream mediator of other profibrotic factors including transforming growth factor (TGF)-ß and angiotensin II. However, recent evidence from our group demonstrated the direct role of CCN2 in maintaining aortic wall homeostasis and acute and lethal aortic aneurysm development induced by angiotensin II in the absence of CCN2 in mice. In order to translate these findings to humans, we evaluated the potential association between three polymorphisms in the CCN2 gene and the presence of a thoracic aortic aneurysm (TAA). Patients with and without TAA retrospectively selected were genotyped for rs6918698, rs9402373 and rs12526196 polymorphisms related to the CCN2 gene. Multivariable logistic regression models were performed. In our population of 366 patients (69 with TAA), no associations were found between rs6918698 and rs9402373 and TAA. However, the presence of one C allele from rs12526196 was associated with TAA comparing with the TT genotype, independently of risk factors such as sex, age, hypertension, type of valvulopathy and the presence of a bicuspid aortic valve (OR = 3.17; 95% CI = 1.30-7.88; p = 0.011). In conclusion, we demonstrated an association between the C allele of rs12526196 in the CCN2 gene and the presence of TAA. This study extrapolates to humans the relevance of CCN2 in aortic aneurysm observed in mice and postulates, for the first time, a potential protective role to CCN2 in aortic aneurysm pathology. Our results encourage future research to explore new variants in the CCN2 gene that could be predisposed to TAA development.


Assuntos
Aneurisma da Aorta Torácica , Doença da Válvula Aórtica Bicúspide , Animais , Humanos , Camundongos , Angiotensina II , Aneurisma da Aorta Torácica/patologia , Estudos Retrospectivos , Fatores de Risco
13.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613933

RESUMO

Progressive glomerulonephritis (GN) is characterized by an excessive accumulation of extracellular (ECM) proteins, mainly type IV collagen (COLIV), in the glomerulus leading to glomerulosclerosis. The current therapeutic approach to GN is suboptimal. Epigenetic drugs could be novel therapeutic options for human disease. Among these drugs, bromodomain and extra-terminal domain (BET) inhibitors (iBETs) have shown beneficial effects in experimental kidney disease and fibrotic disorders. Sex-determining region Y-box 9 (SOX9) is a transcription factor involved in regulating proliferation, migration, and regeneration, but its role in kidney fibrosis is still unclear. We investigated whether iBETs could regulate ECM accumulation in experimental GN and evaluated the role of SOX9 in this process. For this purpose, we tested the iBET JQ1 in mice with anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS). In NTS-injected mice, JQ1 treatment reduced glomerular ECM deposition, mainly by inhibiting glomerular COLIV accumulation and Col4a3 gene overexpression. Moreover, chromatin immunoprecipitation assays demonstrated that JQ1 inhibited the recruitment and binding of BRD4 to the Col4a3 promoter and reduced its transcription. Active SOX9 was found in the nuclei of glomerular cells of NTS-injured kidneys, mainly in COLIV-stained regions. JQ1 treatment blocked SOX9 nuclear translocation in injured kidneys. Moreover, in vitro JQ1 blocked TGF-ß1-induced SOX9 activation and ECM production in cultured mesangial cells. Additionally, SOX9 gene silencing inhibited ECM production, including COLIV production. Our results demonstrated that JQ1 inhibited SOX9/COLIV, to reduce experimental glomerulosclerosis, supporting further research of iBET as a potential therapeutic option in progressive glomerulosclerosis.


Assuntos
Glomerulonefrite , Nefropatias , Animais , Camundongos , Proteínas de Ciclo Celular/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição/metabolismo
14.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163470

RESUMO

Chronic kidney disease (CKD) will become the fifth global cause of death by 2040, thus emphasizing the need to better understand the molecular mechanisms of damage and regeneration in the kidney. CKD predisposes to acute kidney injury (AKI) which, in turn, promotes CKD progression. This implies that CKD or the AKI-to-CKD transition are associated with dysfunctional kidney repair mechanisms. Current therapeutic options slow CKD progression but fail to treat or accelerate recovery from AKI and are unable to promote kidney regeneration. Unraveling the cellular and molecular mechanisms involved in kidney injury and repair, including the failure of this process, may provide novel biomarkers and therapeutic tools. We now review the contribution of different molecular and cellular events to the AKI-to-CKD transition, focusing on the role of macrophages in kidney injury, the different forms of regulated cell death and necroinflammation, cellular senescence and the senescence-associated secretory phenotype (SAPS), polyploidization, and podocyte injury and activation of parietal epithelial cells. Next, we discuss key contributors to repair of kidney injury and opportunities for their therapeutic manipulation, with a focus on resident renal progenitor cells, stem cells and their reparative secretome, certain macrophage subphenotypes within the M2 phenotype and senescent cell clearance.


Assuntos
Injúria Renal Aguda/metabolismo , Macrófagos/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Biomarcadores/metabolismo , Progressão da Doença , Humanos , Regeneração , Fenótipo Secretor Associado à Senescência
15.
Clin Sci (Lond) ; 135(16): 1999-2029, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34427291

RESUMO

Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.


Assuntos
Matriz Extracelular/metabolismo , Rim/metabolismo , Rim/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Animais , Biomarcadores/metabolismo , Fenômenos Fisiológicos Celulares , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Humanos , Camundongos , Insuficiência Renal Crônica/diagnóstico
16.
FASEB J ; 34(1): 410-431, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914684

RESUMO

MicroRNAs (miRNAs) regulate gene expression posttranscriptionally and control biological processes (BPs), including fibrogenesis. Kidney fibrosis remains a clinical challenge and miRNAs may represent a valid therapeutic avenue. We show that miR-9-5p protected from renal fibrosis in the mouse model of unilateral ureteral obstruction (UUO). This was reflected in reduced expression of pro-fibrotic markers, decreased number of infiltrating monocytes/macrophages, and diminished tubular epithelial cell injury and transforming growth factor-beta 1 (TGF-ß1)-dependent de-differentiation in human kidney proximal tubular (HKC-8) cells. RNA-sequencing (RNA-Seq) studies in the UUO model revealed that treatment with miR-9-5p prevented the downregulation of genes related to key metabolic pathways, including mitochondrial function, oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and glycolysis. Studies in human tubular epithelial cells demonstrated that miR-9-5p impeded TGF-ß1-induced bioenergetics derangement. The expression of the FAO-related axis peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)-peroxisome proliferator-activated receptor alpha (PPARα) was reduced by UUO, although preserved by the administration of miR-9-5p. We found that in mice null for the mitochondrial master regulator PGC-1α, miR-9-5p was unable to promote a protective effect in the UUO model. We propose that miR-9-5p elicits a protective response to chronic kidney injury and renal fibrosis by inducing reprogramming of the metabolic derangement and mitochondrial dysfunction affecting tubular epithelial cells.


Assuntos
Reprogramação Celular , Fibrose/prevenção & controle , Regulação da Expressão Gênica , Nefropatias/prevenção & controle , MicroRNAs/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia , Obstrução Ureteral/prevenção & controle , Animais , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transcriptoma , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
17.
Nephrol Dial Transplant ; 36(4): 618-631, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33367746

RESUMO

BACKGROUND: In chronic kidney disease, serum phosphorus (P) elevations stimulate parathyroid hormone (PTH) production, causing severe alterations in the bone-vasculature axis. PTH is the main regulator of the receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, which is essential for bone maintenance and also plays an important role in vascular smooth muscle cell (VSMC) calcification. The discovery of a new RANKL receptor, leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), which is important for osteoblast differentiation but with an unknown role in vascular calcification (VC), led us to examine the contribution of LGR4 in high P/high PTH-driven VC. METHODS: In vivo studies were conducted in subtotally nephrectomized rats fed a normal or high P diet, with and without parathyroidectomy (PTX). PTX rats were supplemented with PTH(1-34) to achieve physiological serum PTH levels. In vitro studies were performed in rat aortic VSMCs cultured in control medium, calcifying medium (CM) or CM plus 10-7 versus 10-9 M PTH. RESULTS: Rats fed a high P diet had a significantly increased aortic calcium (Ca) content. Similarly, Ca deposition was higher in VSMCs exposed to CM. Both conditions were associated with increased RANKL and LGR4 and decreased OPG aorta expression and were exacerbated by high PTH. Silencing of LGR4 or parathyroid hormone receptor 1 (PTH1R) attenuated the high PTH-driven increases in Ca deposition. Furthermore, PTH1R silencing and pharmacological inhibition of protein kinase A (PKA), but not protein kinase C, prevented the increases in RANKL and LGR4 and decreased OPG. Treatment with PKA agonist corroborated that LGR4 regulation is a PTH/PKA-driven process. CONCLUSIONS: High PTH increases LGR4 and RANKL and decreases OPG expression in the aorta, thereby favouring VC. The hormone's direct pro-calcifying actions involve PTH1R binding and PKA activation.


Assuntos
Miócitos de Músculo Liso/metabolismo , Osteoprotegerina/metabolismo , Hormônio Paratireóideo/farmacologia , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Calcificação Vascular/metabolismo , Animais , Hormônios e Agentes Reguladores de Cálcio/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ligantes , Masculino , NF-kappa B/metabolismo , Osteoprotegerina/genética , Ligante RANK/genética , Ratos , Ratos Wistar , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptores Acoplados a Proteínas G/genética
18.
Proc Natl Acad Sci U S A ; 115(16): 4182-4187, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29588419

RESUMO

Acute kidney injury (AKI) is characterized by necrotic tubular cell death and inflammation. The TWEAK/Fn14 axis is a mediator of renal injury. Diverse pathways of regulated necrosis have recently been reported to contribute to AKI, but there are ongoing discussions on the timing or molecular regulators involved. We have now explored the cell death pathways induced by TWEAK/Fn14 activation and their relevance during AKI. In cultured tubular cells, the inflammatory cytokine TWEAK induces apoptosis in a proinflammatory environment. The default inhibitor of necroptosis [necrostatin-1 (Nec-1)] was protective, while caspase inhibition switched cell death to necroptosis. Additionally, folic acid-induced AKI in mice resulted in increased expression of Fn14 and necroptosis mediators, such as receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage domain-like protein (MLKL). Targeting necroptosis with Nec-1 or by genetic RIPK3 deficiency and genetic Fn14 ablation failed to be protective at early time points (48 h). However, a persistently high cell death rate and kidney dysfunction (72-96 h) were dependent on an intact TWEAK/Fn14 axis driving necroptosis. This was prevented by Nec-1, or MLKL, or RIPK3 deficiency and by Nec-1 stable (Nec-1s) administered before or after induction of AKI. These data suggest that initial kidney damage and cell death are amplified through recruitment of inflammation-dependent necroptosis, opening a therapeutic window to treat AKI once it is established. This may be relevant for clinical AKI, since using current diagnostic criteria, severe injury had already led to loss of renal function at diagnosis.


Assuntos
Injúria Renal Aguda/patologia , Citocina TWEAK/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Receptor de TWEAK/fisiologia , Injúria Renal Aguda/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Microambiente Celular , Ativação Enzimática , Feminino , Ácido Fólico/toxicidade , Imidazóis/farmacologia , Indóis/farmacologia , Inflamação , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptor de TWEAK/biossíntese , Receptor de TWEAK/genética
19.
J Am Soc Nephrol ; 31(9): 2026-2042, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32631974

RESUMO

BACKGROUND: CKD leads to vitamin D deficiency. Treatment with vitamin D receptor agonists (VDRAs) may have nephroprotective and anti-inflammatory actions, but their mechanisms of action are poorly understood. METHODS: Modulation of the noncanonical NF-κB2 pathway and its component TNF receptor-associated factor 3 (TRAF3) by the VDRA paricalcitol was studied in PBMCs from patients with ESKD, cytokine-stimulated cells, and preclinical kidney injury models. RESULTS: In PBMCs isolated from patients with ESKD, TRAF3 protein levels were lower than in healthy controls. This finding was associated with evidence of noncanonical NF-κB2 activation and a proinflammatory state. However, PBMCs from patients with ESKD treated with paricalcitol did not exhibit these features. Experiments in cultured cells confirmed the link between TRAF3 and NF-κB2/inflammation. Decreased TRAF3 ubiquitination in K48-linked chains and cIAP1-TRAF3 interaction mediated the mechanisms of paricalcitol action.TRAF3 overexpression by CRISPR/Cas9 technology mimicked VDRA's effects. In a preclinical model of kidney injury, paricalcitol inhibited renal NF-κB2 activation and decreased renal inflammation. In VDR knockout mice with renal injury, paricalcitol prevented TRAF3 downregulation and NF-κB2-dependent gene upregulation, suggesting a VDR-independent anti-inflammatory effect of paricalcitol. CONCLUSIONS: These data suggest the anti-inflammatory actions of paricalcitol depend on TRAF3 modulation and subsequent inhibition of the noncanonical NF-κB2 pathway, identifying a novel mechanism for VDRA's effects. Circulating TRAF3 levels could be a biomarker of renal damage associated with the inflammatory state.


Assuntos
Anti-Inflamatórios/farmacologia , Ergocalciferóis/farmacologia , Falência Renal Crônica/tratamento farmacológico , Receptores de Calcitriol/agonistas , Fator 3 Associado a Receptor de TNF/fisiologia , Animais , Células Cultivadas , Citocina TWEAK/farmacologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , NF-kappa B/fisiologia , Receptores de Calcitriol/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fator 3 Associado a Receptor de TNF/análise
20.
Int J Mol Sci ; 22(13)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34281243

RESUMO

BACKGROUND: Bisphenol A (BPA) is a ubiquitous environmental toxin that accumulates in chronic kidney disease (CKD). Our aim was to explore the effect of chronic exposition of BPA in healthy and injured kidney investigating potential mechanisms involved. METHODS: In C57Bl/6 mice, administration of BPA (120 mg/kg/day, i.p for 5 days/week) was done for 2 and 5 weeks. To study BPA effect on CKD, a model of subtotal nephrectomy (SNX) combined with BPA administration for 5 weeks was employed. In vitro studies were done in human proximal tubular epithelial cells (HK-2 line). RESULTS: Chronic BPA administration to healthy mice induces inflammatory infiltration in the kidney, tubular injury and renal fibrosis (assessed by increased collagen deposition). Moreover, in SNX mice BPA exposure exacerbates renal lesions, including overexpression of the tubular damage biomarker Hepatitis A virus cellular receptor 1 (Havcr-1/KIM-1). BPA upregulated several proinflammatory genes and increased the antioxidant response [Nuclear factor erythroid 2-related factor 2 (Nrf2), Heme Oxygenase-1 (Ho-1) and NAD(P)H dehydrogenase quinone 1 (Nqo-1)] both in healthy and SNX mice. The autophagy process was modulated by BPA, through elevated autophagy-related gene 5 (Atg5), autophagy-related gene 7 (Atg7), Microtubule-associated proteins 1A/1B light chain 3B (Map1lc3b/Lc3b) and Beclin-1 gene levels and blockaded the autophagosome maturation and flux (p62 levels). This autophagy deregulation was confirmed in vitro. CONCLUSIONS: BPA deregulates autophagy flux and redox protective mechanisms, suggesting a potential mechanism of BPA deleterious effects in the kidney.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Compostos Benzidrílicos/farmacologia , Fenóis/efeitos adversos , Fenóis/farmacologia , Insuficiência Renal Crônica/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Compostos Benzidrílicos/metabolismo , Linhagem Celular , Feminino , Humanos , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/fisiopatologia , Túbulos Renais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fenóis/metabolismo , Insuficiência Renal Crônica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa