Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 35(12): e22039, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34793600

RESUMO

OTUB1 is one of the most highly expressed deubiquitinases, counter-regulating the two most abundant ubiquitin chain types. OTUB1 expression is linked to the development and progression of lung cancer and idiopathic pulmonary fibrosis in humans. However, the physiological function of OTUB1 is unknown. Here, we show that constitutive whole-body Otub1 deletion in mice leads to perinatal lethality by asphyxiation. Analysis of (single-cell) RNA sequencing and proteome data demonstrated that OTUB1 is expressed in all lung cell types with a particularly high expression during late-stage lung development (E16.5, E18.5). At E18.5, the lungs of animals with Otub1 deletion presented with increased cell proliferation that decreased saccular air space and prevented inhalation. Flow cytometry-based analysis of E18.5 lung tissue revealed that Otub1 deletion increased proliferation of major lung parenchymal and mesenchymal/other non-hematopoietic cell types. Adult mice with conditional whole-body Otub1 deletion (wbOtub1del/del ) also displayed increased lung cell proliferation in addition to hyperventilation and failure to adapt the respiratory pattern to hypoxia. On the molecular level, Otub1 deletion enhanced mTOR signaling in embryonic and adult lung tissues. Based on these results, we propose that OTUB1 is a negative regulator of mTOR signaling with essential functions for lung cell proliferation, lung development, adult lung tissue homeostasis, and respiratory regulation.


Assuntos
Proliferação de Células , Cisteína Endopeptidases/fisiologia , Homeostase , Hiperventilação/patologia , Pneumopatias/patologia , Insuficiência Respiratória/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Feminino , Hiperventilação/etiologia , Pneumopatias/etiologia , Pneumopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Insuficiência Respiratória/etiologia , Serina-Treonina Quinases TOR/genética
2.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163456

RESUMO

Dysregulated energy metabolism is a major contributor to a multitude of pathologies, including obesity and diabetes. Understanding the regulation of metabolic homeostasis is of utmost importance for the identification of therapeutic targets for the treatment of metabolically driven diseases. We previously identified the deubiquitinase OTUB1 as substrate for the cellular oxygen sensor factor-inhibiting HIF (FIH) with regulatory effects on cellular energy metabolism, but the physiological relevance of OTUB1 is unclear. Here, we report that the induced global deletion of OTUB1 in adult mice (Otub1 iKO) elevated energy expenditure, reduced age-dependent body weight gain, facilitated blood glucose clearance and lowered basal plasma insulin levels. The respiratory exchange ratio was maintained, indicating an unaltered nutrient oxidation. In addition, Otub1 deletion in cells enhanced AKT activity, leading to a larger cell size, higher ATP levels and reduced AMPK phosphorylation. AKT is an integral part of insulin-mediated signaling and Otub1 iKO mice presented with increased AKT phosphorylation following acute insulin administration combined with insulin hypersensitivity. We conclude that OTUB1 is an important regulator of metabolic homeostasis.


Assuntos
Trifosfato de Adenosina/metabolismo , Cisteína Endopeptidases/genética , Deleção de Genes , Resistência à Insulina/genética , Insulina/administração & dosagem , Oxigenases de Função Mista/metabolismo , Adenilato Quinase/metabolismo , Animais , Glicemia , Peso Corporal , Tamanho Celular , Células Cultivadas , Cisteína Endopeptidases/metabolismo , Metabolismo Energético , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Insulina/efeitos adversos , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Anal Chem ; 93(49): 16350-16359, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34852455

RESUMO

The need for tools that facilitate rapid detection and continuous monitoring of SARS-CoV-2 variants of concern (VOCs) is greater than ever, as these variants are more transmissible and therefore increase the pressure of COVID-19 on healthcare systems. To address this demand, we aimed at developing and evaluating a robust and fast diagnostic approach for the identification of SARS-CoV-2 VOC-associated spike gene mutations. Our diagnostic assays detect the E484K and N501Y single-nucleotide polymorphisms (SNPs) as well as a spike gene deletion (HV69/70) and can be run on standard laboratory equipment or on the portable rapid diagnostic technology platform peakPCR. The assays achieved excellent diagnostic performance when tested with RNA extracted from culture-derived SARS-CoV-2 VOC lineages and clinical samples collected in Equatorial Guinea, Central-West Africa. Simplicity of usage and the relatively low cost are advantages that make our approach well suitable for decentralized and rapid testing, especially in resource-limited settings.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Guiné Equatorial/epidemiologia , Deleção de Genes , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/classificação
4.
Exp Cell Res ; 356(2): 152-159, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28315321

RESUMO

The hypoxia inducible factor (HIF) pathway and the ubiquitin system represent major cellular processes that are involved in the regulation of a plethora of cellular signaling pathways and tissue functions. The ubiquitin system controls the ubiquitination of proteins, which is the covalent linkage of one or several ubiquitin molecules to specific targets. This ubiquitination is catalyzed by approximately 1000 different E3 ubiquitin ligases and can lead to different effects, depending on the type of internal ubiquitin chain linkage. The best-studied function is the targeting of proteins for proteasomal degradation. The activity of E3 ligases is antagonized by proteins called deubiquitinases (or deubiquitinating enzymes), which negatively regulate ubiquitin chains. This is performed in most cases by the catalytic removal of these chains from the targeted protein. The HIF pathway is regulated in an oxygen-dependent manner by oxygen-sensing hydroxylases. Covalent modification of HIFα subunits leads to the recruitment of an E3 ligase complex via the von Hippel-Lindau (VHL) protein and the subsequent polyubiquitination and proteasomal degradation of HIFα subunits, demonstrating the regulation of the HIF pathway by the ubiquitin system. This unidirectional effect of an E3 ligase on the HIF pathway is the best-studied example for the interplay between these two important cellular processes. However, additional regulatory mechanisms of the HIF pathway through the ubiquitin system are emerging and, more recently, also the reciprocal regulation of the ubiquitin system through components of the HIF pathway. Understanding these mechanisms and their relevance for the activity of each other is of major importance for the comprehensive elucidation of the oxygen-dependent regulation of cellular processes. This review describes the current knowledge of the functional bidirectional interplay between the HIF pathway and the ubiquitin system on the protein level.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Proteínas Supressoras de Tumor/metabolismo
5.
Redox Biol ; 26: 101265, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31299612

RESUMO

Protein:protein interactions are the basis of molecular communication and are usually of transient non-covalent nature, while covalent interactions other than ubiquitination are rare. For cellular adaptations, the cellular oxygen and peroxide sensor factor inhibiting HIF (FIH) confers oxygen and oxidant stress sensitivity to the hypoxia inducible factor (HIF) by asparagine hydroxylation. We investigated whether FIH contributes to hypoxia adaptation also through other mechanisms and identified a hypoxia sensitive, likely covalent, bond formation by FIH with several client proteins, including the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1). Biochemical analyses were consistent with a co-translational amide bond formation between FIH and OTUB1, occurring within mammalian and bacterial cells but not between separately purified proteins. Bond formation is catalysed by FIH and highly dependent on oxygen availability in the cellular microenvironment. Within cells, a heterotrimeric complex is formed, consisting of two FIH and one covalently linked OTUB1. Complexation of OTUB1 by FIH regulates OTUB1 deubiquitinase activity. Our findings reveal an alternative mechanism for hypoxia adaptation with remarkably high oxygen sensitivity, mediated through covalent protein-protein interactions catalysed by an asparagine modifying dioxygenase.


Assuntos
Cisteína Endopeptidases/genética , Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/metabolismo , Linhagem Celular Tumoral , Cisteína Endopeptidases/metabolismo , Enzimas Desubiquitinantes , Humanos , Espectrometria de Massas , Oxirredução , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa