Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 623(7987): 616-624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938773

RESUMO

Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction1. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity1,2. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/complicações , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Citocinas/metabolismo , Inflamação/complicações , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Membrana Sinovial/patologia , Linfócitos T/imunologia , Linfócitos B/imunologia , Predisposição Genética para Doença/genética , Fenótipo , Análise da Expressão Gênica de Célula Única
2.
J Med Internet Res ; 22(10): e22635, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32936777

RESUMO

BACKGROUND: The COVID-19 pandemic is impacting mental health, but it is not clear how people with different types of mental health problems were differentially impacted as the initial wave of cases hit. OBJECTIVE: The aim of this study is to leverage natural language processing (NLP) with the goal of characterizing changes in 15 of the world's largest mental health support groups (eg, r/schizophrenia, r/SuicideWatch, r/Depression) found on the website Reddit, along with 11 non-mental health groups (eg, r/PersonalFinance, r/conspiracy) during the initial stage of the pandemic. METHODS: We created and released the Reddit Mental Health Dataset including posts from 826,961 unique users from 2018 to 2020. Using regression, we analyzed trends from 90 text-derived features such as sentiment analysis, personal pronouns, and semantic categories. Using supervised machine learning, we classified posts into their respective support groups and interpreted important features to understand how different problems manifest in language. We applied unsupervised methods such as topic modeling and unsupervised clustering to uncover concerns throughout Reddit before and during the pandemic. RESULTS: We found that the r/HealthAnxiety forum showed spikes in posts about COVID-19 early on in January, approximately 2 months before other support groups started posting about the pandemic. There were many features that significantly increased during COVID-19 for specific groups including the categories "economic stress," "isolation," and "home," while others such as "motion" significantly decreased. We found that support groups related to attention-deficit/hyperactivity disorder, eating disorders, and anxiety showed the most negative semantic change during the pandemic out of all mental health groups. Health anxiety emerged as a general theme across Reddit through independent supervised and unsupervised machine learning analyses. For instance, we provide evidence that the concerns of a diverse set of individuals are converging in this unique moment of history; we discovered that the more users posted about COVID-19, the more linguistically similar (less distant) the mental health support groups became to r/HealthAnxiety (ρ=-0.96, P<.001). Using unsupervised clustering, we found the suicidality and loneliness clusters more than doubled in the number of posts during the pandemic. Specifically, the support groups for borderline personality disorder and posttraumatic stress disorder became significantly associated with the suicidality cluster. Furthermore, clusters surrounding self-harm and entertainment emerged. CONCLUSIONS: By using a broad set of NLP techniques and analyzing a baseline of prepandemic posts, we uncovered patterns of how specific mental health problems manifest in language, identified at-risk users, and revealed the distribution of concerns across Reddit, which could help provide better resources to its millions of users. We then demonstrated that textual analysis is sensitive to uncover mental health complaints as they appear in real time, identifying vulnerable groups and alarming themes during COVID-19, and thus may have utility during the ongoing pandemic and other world-changing events such as elections and protests.


Assuntos
Ansiedade/diagnóstico , Ansiedade/epidemiologia , Infecções por Coronavirus/epidemiologia , Saúde Mental/estatística & dados numéricos , Processamento de Linguagem Natural , Pneumonia Viral/epidemiologia , Grupos de Autoajuda/estatística & dados numéricos , Mídias Sociais/estatística & dados numéricos , Adolescente , Adulto , Ansiedade/psicologia , Betacoronavirus , Transtorno da Personalidade Borderline/epidemiologia , Transtorno da Personalidade Borderline/psicologia , COVID-19 , Feminino , Saúde Global , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Ideação Suicida , Adulto Jovem
3.
PLoS Comput Biol ; 13(8): e1005706, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28821012

RESUMO

Our work focuses on the stability, resilience, and response to perturbation of the bacterial communities in the human gut. Informative flash flood-like disturbances that eliminate most gastrointestinal biomass can be induced using a clinically-relevant iso-osmotic agent. We designed and executed such a disturbance in human volunteers using a dense longitudinal sampling scheme extending before and after induced diarrhea. This experiment has enabled a careful multidomain analysis of a controlled perturbation of the human gut microbiota with a new level of resolution. These new longitudinal multidomain data were analyzed using recently developed statistical methods that demonstrate improvements over current practices. By imposing sparsity constraints we have enhanced the interpretability of the analyses and by employing a new adaptive generalized principal components analysis, incorporated modulated phylogenetic information and enhanced interpretation through scoring of the portions of the tree most influenced by the perturbation. Our analyses leverage the taxa-sample duality in the data to show how the gut microbiota recovers following this perturbation. Through a holistic approach that integrates phylogenetic, metagenomic and abundance information, we elucidate patterns of taxonomic and functional change that characterize the community recovery process across individuals. We provide complete code and illustrations of new sparse statistical methods for high-dimensional, longitudinal multidomain data that provide greater interpretability than existing methods.


Assuntos
Microbioma Gastrointestinal/genética , Metagenoma/genética , Metagenômica/métodos , Modelos Biológicos , Adulto , DNA Bacteriano/análise , DNA Bacteriano/genética , Diarreia , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , RNA Ribossômico 16S/genética , Adulto Jovem
4.
Nat Commun ; 15(1): 1204, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331990

RESUMO

Autoimmune disease heritability is enriched in T cell-specific regulatory regions of the genome. Modern-day T cell datasets now enable association studies between single nucleotide polymorphisms (SNPs) and a myriad of molecular phenotypes, including chromatin accessibility, gene expression, transcriptional programs, T cell antigen receptor (TCR) amino acid usage, and cell state abundances. Such studies have identified hundreds of quantitative trait loci (QTLs) in T cells that colocalize with genetic risk for autoimmune disease. The key challenge facing immunologists today lies in synthesizing these results toward a unified understanding of the autoimmune T cell: which genes, cell states, and antigens drive tissue destruction?


Assuntos
Doenças Autoimunes , Linfócitos T , Humanos , Autoimunidade/genética , Locos de Características Quantitativas/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores de Antígenos de Linfócitos T/genética , Doenças Autoimunes/genética , Estudo de Associação Genômica Ampla
5.
bioRxiv ; 2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37502994

RESUMO

T cell differentiation depends on activation through the T cell receptor (TCR), whose amino acid sequence varies cell to cell. Particular TCR amino acid sequences nearly guarantee Mucosal-Associated Invariant T (MAIT) and Natural Killer T (NKT) cell fates. To comprehensively define how TCR amino acids affects all T cell fates, we analyze the paired αßTCR sequence and transcriptome of 819,772 single cells. We find that hydrophobic CDR3 residues promote regulatory T cell transcriptional states in both the CD8 and CD4 lineages. Most strikingly, we find a set of TCR sequence features, concentrated in CDR2α, that promotes positive selection in the thymus as well as transition from naïve to memory in the periphery. Even among T cells that recognize the same antigen, these TCR sequence features help to explain which T cells form immunological memory, which is essential for effective pathogen response.

6.
Nat Protoc ; 18(9): 2625-2641, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495751

RESUMO

The human leukocyte antigen (HLA) locus is associated with more complex diseases than any other locus in the human genome. In many diseases, HLA explains more heritability than all other known loci combined. In silico HLA imputation methods enable rapid and accurate estimation of HLA alleles in the millions of individuals that are already genotyped on microarrays. HLA imputation has been used to define causal variation in autoimmune diseases, such as type I diabetes, and in human immunodeficiency virus infection control. However, there are few guidelines on performing HLA imputation, association testing, and fine mapping. Here, we present a comprehensive tutorial to impute HLA alleles from genotype data. We provide detailed guidance on performing standard quality control measures for input genotyping data and describe options to impute HLA alleles and amino acids either locally or using the web-based Michigan Imputation Server, which hosts a multi-ancestry HLA imputation reference panel. We also offer best practice recommendations to conduct association tests to define the alleles, amino acids, and haplotypes that affect human traits. Along with the pipeline, we provide a step-by-step online guide with scripts and available software ( https://github.com/immunogenomics/HLA_analyses_tutorial ). This tutorial will be broadly applicable to large-scale genotyping data and will contribute to defining the role of HLA in human diseases across global populations.


Assuntos
Antígenos HLA , Antígenos de Histocompatibilidade Classe I , Humanos , Alelos , Antígenos HLA/genética , Genótipo , Haplótipos , Aminoácidos/genética , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla
7.
medRxiv ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36993194

RESUMO

The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning autoimmune and infectious diseases, transplantation, and cancer. While coding variation in HLA genes has been extensively documented, regulatory genetic variation modulating HLA expression levels has not been comprehensively investigated. Here, we mapped expression quantitative trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells from three tissues, using personalized reference genomes to mitigate technical confounding. We identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-cell resolution revealed that many eQTL effects are dynamic across cell states even within a cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B, and T cells. Dynamic HLA regulation may underlie important interindividual variability in immune responses.

8.
Nat Genet ; 55(12): 2255-2268, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38036787

RESUMO

The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning autoimmune and infectious diseases, transplantation and cancer. While coding variation in HLA genes has been extensively documented, regulatory genetic variation modulating HLA expression levels has not been comprehensively investigated. Here we mapped expression quantitative trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells from three tissues. To mitigate technical confounding, we developed scHLApers, a pipeline to accurately quantify single-cell HLA expression using personalized reference genomes. We identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-cell resolution revealed that many eQTL effects are dynamic across cell states even within a cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B and T cells. For example, a T cell HLA-DQA1 eQTL ( rs3104371 ) is strongest in cytotoxic cells. Dynamic HLA regulation may underlie important interindividual variability in immune responses.


Assuntos
Regulação da Expressão Gênica , Locos de Características Quantitativas , Humanos , Regulação da Expressão Gênica/genética , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
9.
Nat Biotechnol ; 40(3): 355-363, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34675423

RESUMO

As single-cell datasets grow in sample size, there is a critical need to characterize cell states that vary across samples and associate with sample attributes, such as clinical phenotypes. Current statistical approaches typically map cells to clusters and then assess differences in cluster abundance. Here we present co-varying neighborhood analysis (CNA), an unbiased method to identify associated cell populations with greater flexibility than cluster-based approaches. CNA characterizes dominant axes of variation across samples by identifying groups of small regions in transcriptional space-termed neighborhoods-that co-vary in abundance across samples, suggesting shared function or regulation. CNA performs statistical testing for associations between any sample-level attribute and the abundances of these co-varying neighborhood groups. Simulations show that CNA enables more sensitive and accurate identification of disease-associated cell states than a cluster-based approach. When applied to published datasets, CNA captures a Notch activation signature in rheumatoid arthritis, identifies monocyte populations expanded in sepsis and identifies a novel T cell population associated with progression to active tuberculosis.


Assuntos
Linfócitos T , Transcriptoma , Análise por Conglomerados , Fenótipo , Transcriptoma/genética
10.
Nat Biotechnol ; 40(7): 1123-1131, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35241837

RESUMO

Design of nucleic acid-based viral diagnostics typically follows heuristic rules and, to contend with viral variation, focuses on a genome's conserved regions. A design process could, instead, directly optimize diagnostic effectiveness using a learned model of sensitivity for targets and their variants. Toward that goal, we screen 19,209 diagnostic-target pairs, concentrated on CRISPR-based diagnostics, and train a deep neural network to accurately predict diagnostic readout. We join this model with combinatorial optimization to maximize sensitivity over the full spectrum of a virus's genomic variation. We introduce Activity-informed Design with All-inclusive Patrolling of Targets (ADAPT), a system for automated design, and use it to design diagnostics for 1,933 vertebrate-infecting viral species within 2 hours for most species and within 24 hours for all but three. We experimentally show that ADAPT's designs are sensitive and specific to the lineage level and permit lower limits of detection, across a virus's variation, than the outputs of standard design techniques. Our strategy could facilitate a proactive resource of assays for detecting pathogens.


Assuntos
Aprendizado de Máquina , Ácidos Nucleicos , Redes Neurais de Computação
11.
Nat Commun ; 12(1): 5890, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620862

RESUMO

Recent advances in single-cell technologies and integration algorithms make it possible to construct comprehensive reference atlases encompassing many donors, studies, disease states, and sequencing platforms. Much like mapping sequencing reads to a reference genome, it is essential to be able to map query cells onto complex, multimillion-cell reference atlases to rapidly identify relevant cell states and phenotypes. We present Symphony ( https://github.com/immunogenomics/symphony ), an algorithm for building large-scale, integrated reference atlases in a convenient, portable format that enables efficient query mapping within seconds. Symphony localizes query cells within a stable low-dimensional reference embedding, facilitating reproducible downstream transfer of reference-defined annotations to the query. We demonstrate the power of Symphony in multiple real-world datasets, including (1) mapping a multi-donor, multi-species query to predict pancreatic cell types, (2) localizing query cells along a developmental trajectory of fetal liver hematopoiesis, and (3) inferring surface protein expression with a multimodal CITE-seq atlas of memory T cells.


Assuntos
Genoma , Análise de Célula Única , Software , Algoritmos , Biologia Computacional , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa