Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
R Soc Open Sci ; 9(8): 220079, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36016910

RESUMO

Networks are increasingly used in various fields to represent systems with the aim of understanding the underlying rules governing observed interactions, and hence predict how the system is likely to behave in the future. Recent developments in network science highlight that accounting for node metadata improves both our understanding of how nodes interact with one another, and the accuracy of link prediction. However, to predict interactions in a network within existing statistical and machine learning frameworks, we need to learn objects that rapidly grow in dimension with the number of nodes. Thus, the task becomes computationally and conceptually challenging for networks. Here, we present a new predictive procedure combining a statistical, low-rank graph embedding method with machine learning techniques which reduces substantially the complexity of the learning task and allows us to efficiently predict interactions from node metadata in bipartite networks. To illustrate its application on real-world data, we apply it to a large dataset of tourist visits across a country. We found that our procedure accurately reconstructs existing interactions and predicts new interactions in the network. Overall, both from a network science and data science perspective, our work offers a flexible and generalizable procedure for link prediction.

2.
Trends Parasitol ; 37(5): 445-455, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33558197

RESUMO

Biological interactions are key drivers of ecological and evolutionary processes. The complexity of such interactions hinders our understanding of ecological systems and our ability to make effective predictions in changing environments. However, network analysis allows us to better tackle the complexity of ecosystems because it extracts the properties of an ecological system according to the number and distribution of links among interacting entities. The number of studies using network analysis to solve ecological and evolutionary questions in parasitology has increased over the past decade. Here, we synthesise the contribution of network analysis toward disentangling host-parasite processes. Furthermore, we identify current trends in mainstream ecology and novel applications of network analysis that present opportunities for research on host-parasite interactions.


Assuntos
Interações Hospedeiro-Parasita , Modelos Biológicos , Parasitologia , Animais , Interações Hospedeiro-Parasita/fisiologia , Parasitologia/métodos , Parasitologia/tendências , Análise de Rede Social
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa