Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 34(29): 8522-8531, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29923735

RESUMO

Extracellular vesicles (EVs) are generating a growing interest because of the key roles they play in various biological processes and because of their potential use as biomarkers in clinical diagnostics and as efficient carriers in drug-delivery and gene-therapy applications. Their full exploitation, however, depends critically on the possibility to classify them into different subpopulations, a task that in turn relies on efficient means to identify their unique biomolecular and physical signatures. Because of the large heterogeneity of EV samples, such information remains rather elusive, and there is accordingly a need for new and complementary characterization schemes that can help expand the library of distinct EV features. In this work, we used surface-sensitive waveguide scattering microscopy with single EV resolution to characterize two subsets of similarly sized EVs that were preseparated based on their difference in buoyant density. Unexpectedly, the scattering intensity distribution revealed that the scattering intensity of the high-density (HD) population was on an average a factor of three lower than that of the low-density (LD) population. By further labeling the EV samples with a self-inserting lipid-membrane dye, the scattering and fluorescence intensities from EVs could be simultaneously measured and correlated at the single-particle level. The labeled HD sample exhibited not only lower fluorescence and scattering intensities but also lower effective refractive index ( n ≈ 1.35) compared with the LD EVs ( n ≈ 1.38), indicating that both the lipid and protein contents were indeed lower in the HD EVs. Although separation in density gradients of similarly sized EVs is usually linked to differences in biomolecular content, we suggest based on these observations that the separation rather reflects the ability of the solute of the gradient to penetrate the lipid membrane enclosing the EVs, that is, the two gradient bands are more likely because of the differences in membrane permeability than to differences in biomolecular content of the EVs.


Assuntos
Vesículas Extracelulares/química , Lipídeos/análise , Microscopia de Fluorescência , Biomarcadores/química , Refratometria
2.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3164-3179, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27495390

RESUMO

BACKGROUND: Our body fluids contain a multitude of cell-derived vesicles, secreted by most cell types, commonly referred to as extracellular vesicles. They have attracted considerable attention for their function as intercellular communication vehicles in a broad range of physiological processes and pathological conditions. Extracellular vesicles and especially the smallest type, exosomes, have also generated a lot of excitement in view of their potential as disease biomarkers or as carriers for drug delivery. In this context, state-of-the-art techniques capable of comprehensively characterizing vesicles in biological fluids are urgently needed. SCOPE OF REVIEW: This review presents the arsenal of techniques available for quantification and characterization of physical properties of extracellular vesicles, summarizes their working principles, discusses their advantages and limitations and further illustrates their implementation in extracellular vesicle research. MAJOR CONCLUSIONS: The small size and physicochemical heterogeneity of extracellular vesicles make their physical characterization and quantification an extremely challenging task. Currently, structure, size, buoyant density, optical properties and zeta potential have most commonly been studied. The concentration of vesicles in suspension can be expressed in terms of biomolecular or particle content depending on the method at hand. In addition, common quantification methods may either provide a direct quantitative measurement of vesicle concentration or solely allow for relative comparison between samples. GENERAL SIGNIFICANCE: The combination of complementary methods capable of detecting, characterizing and quantifying extracellular vesicles at a single particle level promises to provide new exciting insights into their modes of action and to reveal the existence of vesicle subpopulations fulfilling key biological tasks.


Assuntos
Fenômenos Biofísicos , Vesículas Extracelulares/metabolismo , Animais , Técnicas Biossensoriais , Humanos , Modelos Biológicos , Nanopartículas/química
3.
Anal Chem ; 88(20): 9980-9988, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27644331

RESUMO

Accurate concentration determination of subpopulations of extracellular vesicles (EVs), such as exosomes, is of importance both in the context of understanding their fundamental biological role and of potentially using them as disease biomarkers. In principle, this can be achieved by measuring the rate of diffusion-limited mass uptake to a sensor surface modified with a receptor designed to only bind the subpopulation of interest. However, a significant error is introduced if the targeted EV subpopulation has a size, and thus hydrodynamic diffusion coefficient, that differs from the mean size and diffusion coefficient of the whole EV population and/or if the EVs become deformed upon binding to the surface. We here demonstrate a new approach to determine the mean size (or effective film thickness) of bound nanoparticles, in general, and EV subpopulation carrying a marker of interest, in particular. The method is based on operating surface plasmon resonance simultaneously at two wavelengths with different sensing depths and using the ratio of the corresponding responses to extract the particle size on the surface. By estimating in this way the degree of deformation of adsorbed EVs, we markedly improved their bulk concentration determination and showed that EVs carrying the exosomal marker CD63 correspond to not more than around 10% of the EV sample.

4.
Anal Chem ; 86(12): 5929-36, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24848946

RESUMO

Exosomes are cell-secreted nanometer-sized extracellular vesicles that have been reported to play an important role in intercellular communication. They are also considered potential diagnostic markers for various health disorders, and intense investigations are presently directed toward their use as carriers in drug-delivery and gene-therapy applications. This has generated a growing need for sensitive methods capable of accurately and specifically determining the concentration of exosomes in complex biological fluids. Here, we explore the use of label-free surface-based sensing with surface plasmon resonance (SPR) read-out to determine the concentration of exosomes in solution. Human mast cell secreted exosomes carrying the tetraspanin membrane protein CD63 were analyzed by measuring their diffusion-limited binding rate to an SPR sensor surface functionalized with anti-CD63 antibodies. The concentration of suspended exosomes was determined by first converting the SPR response into the surface-bound mass. The increase in mass uptake over time was then related to the exosome concentration in solution using a formalism describing diffusion-limited binding under controlled flow conditions. The proposed quantification method is based on a calibration and control measurements performed with proteins and synthetic lipid vesicles and takes into account (i) the influence of the broad size distribution of the exosomes on the surface coverage, (ii) the fact that their size is comparable to the ∼150 nm probing depth of SPR, and (iii) possible deformation of exosomes upon adsorption. Under those considerations, the accuracy of the concentration determination was estimated to be better than ±50% and significantly improve if the exosome deformation is negligible.


Assuntos
Exossomos/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Limite de Detecção , Soluções
5.
Chem Sci ; 9(14): 3494-3502, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29780479

RESUMO

Emissive base analogs are powerful tools for probing nucleic acids at the molecular level. Herein we describe the development and thorough characterization of pentacyclic adenine (pA), a versatile base analog with exceptional fluorescence properties. When incorporated into DNA, pA pairs selectively with thymine without perturbing the B-form structure and is among the brightest nucleobase analogs reported so far. Together with the recently established base analog acceptor qAnitro, pA allows accurate distance and orientation determination via Förster resonance energy transfer (FRET) measurements. The high brightness at emission wavelengths above 400 nm also makes it suitable for fluorescence microscopy, as demonstrated by imaging of single liposomal constructs coated with cholesterol-anchored pA-dsDNA, using total internal reflection fluorescence microscopy. Finally, pA is also highly promising for two-photon excitation at 780 nm, with a brightness (5.3 GM) that is unprecedented for a base analog.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa