RESUMO
Trained innate immunity fosters a sustained favorable response of myeloid cells to a secondary challenge, despite their short lifespan in circulation. We thus hypothesized that trained immunity acts via modulation of hematopoietic stem and progenitor cells (HSPCs). Administration of ß-glucan (prototypical trained-immunity-inducing agonist) to mice induced expansion of progenitors of the myeloid lineage, which was associated with elevated signaling by innate immune mediators, such as IL-1ß and granulocyte-macrophage colony-stimulating factor (GM-CSF), and with adaptations in glucose metabolism and cholesterol biosynthesis. The trained-immunity-related increase in myelopoiesis resulted in a beneficial response to secondary LPS challenge and protection from chemotherapy-induced myelosuppression in mice. Therefore, modulation of myeloid progenitors in the bone marrow is an integral component of trained immunity, which to date, was considered to involve functional changes of mature myeloid cells in the periphery.
Assuntos
Imunidade Inata , Memória Imunológica , Células Progenitoras Mieloides/imunologia , Animais , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/efeitos dos fármacos , Mielopoese/imunologia , beta-Glucanas/farmacologiaRESUMO
Resolution of inflammation is essential for tissue homeostasis and represents a promising approach to inflammatory disorders. Here we found that developmental endothelial locus-1 (DEL-1), a secreted protein that inhibits leukocyte-endothelial adhesion and inflammation initiation, also functions as a non-redundant downstream effector in inflammation clearance. In human and mouse periodontitis, waning of inflammation was correlated with DEL-1 upregulation, whereas resolution of experimental periodontitis failed in DEL-1 deficiency. This concept was mechanistically substantiated in acute monosodium-urate-crystal-induced inflammation, where the pro-resolution function of DEL-1 was attributed to effective apoptotic neutrophil clearance (efferocytosis). DEL-1-mediated efferocytosis induced liver X receptor-dependent macrophage reprogramming to a pro-resolving phenotype and was required for optimal production of at least certain specific pro-resolving mediators. Experiments in transgenic mice with cell-specific overexpression of DEL-1 linked its anti-leukocyte-recruitment action to endothelial cell-derived DEL-1 and its efferocytic/pro-resolving action to macrophage-derived DEL-1. Thus, the compartmentalized expression of DEL-1 facilitates distinct homeostatic functions in an appropriate context that can be harnessed therapeutically.
Assuntos
Proteínas de Transporte/metabolismo , Inflamação/imunologia , Macrófagos/fisiologia , Neutrófilos/imunologia , Periodontite/imunologia , Adulto , Animais , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/genética , Moléculas de Adesão Celular , Reprogramação Celular , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intercelular , Células K562 , Receptores X do Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , FagocitoseRESUMO
IL-17 mediates immune protection from fungi and bacteria, as well as it promotes autoimmune pathologies. However, the regulation of the signal transduction from the IL-17 receptor (IL-17R) remained elusive. We developed a novel mass spectrometry-based approach to identify components of the IL-17R complex followed by analysis of their roles using reverse genetics. Besides the identification of linear ubiquitin chain assembly complex (LUBAC) as an important signal transducing component of IL-17R, we established that IL-17 signaling is regulated by a robust negative feedback loop mediated by TBK1 and IKKε. These kinases terminate IL-17 signaling by phosphorylating the adaptor ACT1 leading to the release of the essential ubiquitin ligase TRAF6 from the complex. NEMO recruits both kinases to the IL-17R complex, documenting that NEMO has an unprecedented negative function in IL-17 signaling, distinct from its role in NF-κB activation. Our study provides a comprehensive view of the molecular events of the IL-17 signal transduction and its regulation.
Assuntos
Retroalimentação Fisiológica , Receptores de Interleucina-17/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células HEK293 , Células HeLa , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Interleucina-17/genéticaRESUMO
Bardet-Biedl syndrome (BBS) is a pleiotropic ciliopathy caused by dysfunction of primary cilia. More than half of BBS patients carry mutations in one of eight genes encoding for subunits of a protein complex, the BBSome, which mediates trafficking of ciliary cargoes. In this study, we elucidated the mechanisms of the BBSome assembly in living cells and how this process is spatially regulated. We generated a large library of human cell lines deficient in a particular BBSome subunit and expressing another subunit tagged with a fluorescent protein. We analyzed these cell lines utilizing biochemical assays, conventional and expansion microscopy, and quantitative fluorescence microscopy techniques: fluorescence recovery after photobleaching and fluorescence correlation spectroscopy. Our data revealed that the BBSome formation is a sequential process. We show that the pre-BBSome is nucleated by BBS4 and assembled at pericentriolar satellites, followed by the translocation of the BBSome into the ciliary base mediated by BBS1. Our results provide a framework for elucidating how BBS-causative mutations interfere with the biogenesis of the BBSome.
Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/patologia , Sistemas CRISPR-Cas/genética , Linhagem Celular , Cílios/metabolismo , Citoplasma/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Edição de Genes , Humanos , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Mutação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismoRESUMO
Experimental autoimmune encephalomyelitis (EAE) represents the mouse model of multiple sclerosis, a devastating neurological disorder. EAE development and progression involves the infiltration of different immune cells into the brain and spinal cord. However, less is known about a potential role of eosinophil granulocytes for EAE disease pathogenesis. In the present study, we found enhanced eosinophil abundance accompanied by increased concentration of the eosinophil chemoattractant eotaxin-1 in the spinal cord in the course of EAE induced in C57BL/6 mice by immunization with MOG35-55 peptide. However, the absence of eosinophils did not affect neuroinflammation, demyelination and clinical development or severity of EAE, as assessed in ∆dblGATA1 eosinophil-deficient mice. Taken together, despite their enhanced abundance in the inflamed spinal cord during disease progression, eosinophils were dispensable for EAE development.
Assuntos
Encefalomielite Autoimune Experimental/imunologia , Eosinófilos/imunologia , Esclerose Múltipla/imunologia , Medula Espinal/patologia , Animais , Quimiocina CCL11/metabolismo , Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/diagnóstico , Encefalomielite Autoimune Experimental/patologia , Eosinófilos/metabolismo , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/sangue , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/imunologia , Índice de Gravidade de Doença , Medula Espinal/imunologiaRESUMO
Hematopoietic stem cells (HSCs) remain mostly quiescent under steady-state conditions but switch to a proliferative state following hematopoietic stress, e.g., bone marrow (BM) injury, transplantation, or systemic infection and inflammation. The homeostatic balance between quiescence, self-renewal, and differentiation of HSCs is strongly dependent on their interactions with cells that constitute a specialized microanatomical environment in the BM known as the HSC niche. Here, we identified the secreted extracellular matrix protein Del-1 as a component and regulator of the HSC niche. Specifically, we found that Del-1 was expressed by several cellular components of the HSC niche, including arteriolar endothelial cells, CXCL12-abundant reticular (CAR) cells, and cells of the osteoblastic lineage. Del-1 promoted critical functions of the HSC niche, as it regulated long-term HSC (LT-HSC) proliferation and differentiation toward the myeloid lineage. Del-1 deficiency in mice resulted in reduced LT-HSC proliferation and infringed preferentially upon myelopoiesis under both steady-state and stressful conditions, such as hematopoietic cell transplantation and G-CSF- or inflammation-induced stress myelopoiesis. Del-1-induced HSC proliferation and myeloid lineage commitment were mediated by ß3 integrin on hematopoietic progenitors. This hitherto unknown Del-1 function in the HSC niche represents a juxtacrine homeostatic adaptation of the hematopoietic system in stress myelopoiesis.