Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 197: 111540, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31276926

RESUMO

Protein aggregation can lead to several incurable amyloidosis diseases. The full aggregation pathway is not fully understood, creating the need for new methods of studying this important biological phenomenon. Lysozyme is an amyloidogenic protein which is often used as a model protein for studying amyloidosis. This work explores the potential of employing Lysozyme encapsulated gold nanoclusters (Ly-AuNCs) to study the protein's aggregation. The fluorescence emission properties of Ly-AuNCs were studied in the presence of increasing concentrations of native lysozyme and as a function of pH, of relevance in macromolecular crowding and inflammation-triggered aggregation. AuNC fluorescence was observed to both redshift and increase in intensity as pH is increased or when native lysozyme is added to a solution of Ly-AuNCs at pH 3. The long (µs) fluorescence lifetime component of AuNC emission was observed to decrease under both conditions. Interestingly it was found via Time-Resolved Emission Spectra (TRES) that both AuNC fluorescence components increase in intensity and redshift with increasing pH while only the long lifetime component of AuNC was observed to change when adding native lysozyme to solution; indicating that the underlying mechanisms for the changes observed are fundamentally different for each case. It is possible that the sensitivity of Ly-AuNCs to native lysozyme concentration could be utilized to study early-stage aggregation.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Muramidase/química , Animais , Galinhas , Concentração de Íons de Hidrogênio , Muramidase/metabolismo , Agregados Proteicos/fisiologia , Espectrometria de Fluorescência
2.
J Photochem Photobiol B ; 187: 131-135, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30145463

RESUMO

Protein encapsulated gold nanoclusters have received much attention due to the possibility of using them as a non-toxic fluorescent probe or marker for biomedical applications, however one major disadvantage currently is their low brightness and quantum yield in comparison to currently used fluorescent markers. A method of increasing the fluorescence emission of Human Serum Albumin (HSA) encapsulated gold nanoclusters (AuNCs) via a Polyallylamide hydrochloride (PAH) coating is described. PAH molecules with a molecular weight of ~17,500 Da were found to enhance the fluorescence emission of HSA-AuNCs by 3-fold when the protein/polymer concentration ratio is 2:1 in solution. Interestingly, the fluorescence lifetime of the AuNCs was found to decrease while the native tryptophan (TRP) fluorescence lifetime also decreased during the fluorescence emission intensity enhancement caused by the PAH binding. Coinciding with the decrease in fluorescence lifetime, the zeta potential of the system was observed to be zero during maximum fluorescence intensity enhancement, causing the formation of large aggregates. These results suggest that PAH binds to the HSA-AuNCs acting as a linker; causing aggregation and rigidification, which results in a decrease in separation between native TRP of HSA and AuNCs; improving Förster Resonance Energy Transfer (FRET) and increasing the fluorescence emission intensity. These findings are critical to the development of brighter protein encapsulated AuNCs.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Poliaminas/química , Albumina Sérica Humana/química , Transferência Ressonante de Energia de Fluorescência , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa