Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982468

RESUMO

The need to protect human and environmental health and avoid the widespread use of substances obtained from nonrenewable sources is steering research toward the discovery and development of new molecules characterized by high biocompatibility and biodegradability. Due to their very widespread use, a class of substances for which this need is particularly urgent is that of surfactants. In this respect, an attractive and promising alternative to commonly used synthetic surfactants is represented by so-called biosurfactants, amphiphiles naturally derived from microorganisms. One of the best-known families of biosurfactants is that of rhamnolipids, which are glycolipids with a headgroup formed by one or two rhamnose units. Great scientific and technological effort has been devoted to optimization of their production processes, as well as their physicochemical characterization. However, a conclusive structure-function relationship is far from being defined. In this review, we aim to move a step forward in this direction, by presenting a comprehensive and unified discussion of physicochemical properties of rhamnolipids as a function of solution conditions and rhamnolipid structure. We also discuss still unresolved issues that deserve further investigation in the future, to allow the replacement of conventional surfactants with rhamnolipids.


Assuntos
Glicolipídeos , Tensoativos , Humanos , Glicolipídeos/química , Tensoativos/química , Tecnologia , Água
2.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628128

RESUMO

Lipid structural diversity strongly affects biomembrane chemico-physical and structural properties in addition to membrane-associated events. At high concentrations, cholesterol increases membrane order and rigidity, while polyunsaturated lipids are reported to increase disorder and flexibility. How these different tendencies balance in composite bilayers is still controversial. In this study, electron paramagnetic resonance spectroscopy, small angle neutron scattering, and neutron reflectivity were used to investigate the structural properties of cholesterol-containing lipid bilayers in the fluid state with increasing amounts of polyunsaturated omega-3 lipids. Either the hybrid 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine or the symmetric 1,2-docosahexaenoyl-sn-glycero-3-phosphocholine were added to the mixture of the naturally abundant 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine and cholesterol. Our results indicate that the hybrid and the symmetric omega-3 phospholipids affect the microscopic organization of lipid bilayers differently. Cholesterol does not segregate from polyunsaturated phospholipids and, through interactions with them, is able to suppress the formation of non-lamellar structures induced by the symmetric polyunsaturated lipid. However, this order/disorder balance leads to a bilayer whose structural organization cannot be ascribed to either a liquid ordered or to a canonical liquid disordered phase, in that it displays a very loose packing of the intermediate segments of lipid chains.


Assuntos
Ácidos Graxos Ômega-3 , Bicamadas Lipídicas , Colesterol/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Fosforilcolina
3.
Biomacromolecules ; 22(4): 1445-1457, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33729771

RESUMO

Extracellular polysaccharides are widely produced by bacteria, yeasts, and algae. These polymers are involved in several biological functions, such as bacteria adhesion to surface and biofilm formation, ion sequestering, protection from desiccation, and cryoprotection. The chemical characterization of these polymers is the starting point for obtaining relationships between their structures and their various functions. While this fundamental correlation is well reported and studied for the proteins, for the polysaccharides, this relationship is less intuitive. In this paper, we elucidate the chemical structure and conformational studies of a mannan exopolysaccharide from the permafrost isolated bacterium Psychrobacter arcticus strain 273-4. The mannan from the cold-adapted bacterium was compared with its dephosphorylated derivative and the commercial product from Saccharomyces cerevisiae. Starting from the chemical structure, we explored a new approach to deepen the study of the structure/activity relationship. A pool of physicochemical techniques, ranging from small-angle neutron scattering (SANS) and dynamic and static light scattering (DLS and SLS, respectively) to circular dichroism (CD) and cryo-transmission electron microscopy (cryo-TEM), have been used. Finally, the ice recrystallization inhibition activity of the polysaccharides was explored. The experimental evidence suggests that the mannan exopolysaccharide from P. arcticus bacterium has an efficient interaction with the water molecules, and it is structurally characterized by rigid-rod regions assuming a 14-helix-type conformation.


Assuntos
Mananas , Psychrobacter , Aderência Bacteriana , Polissacarídeos
4.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502432

RESUMO

In the search for optimized thrombin binding aptamers (TBAs), we herein describe the synthesis of a library of TBA analogues obtained by end-functionalization with the electron-rich 1,5-dialkoxy naphthalene (DAN) and the electron-deficient 1,8,4,5-naphthalenetetra-carboxylic diimide (NDI) moieties. Indeed, when these G-rich oligonucleotides were folded into the peculiar TBA G-quadruplex (G4) structure, effective donor-acceptor charge transfer interactions between the DAN and NDI residues attached to the extremities of the sequence were induced, providing pseudo-cyclic structures. Alternatively, insertion of NDI groups at both extremities produced TBA analogues stabilized by π-π stacking interactions. All the doubly-modified TBAs were characterized by different biophysical techniques and compared with the analogues carrying only the DAN or NDI residue and unmodified TBA. These modified TBAs exhibited higher nuclease resistance, and their G4 structures were markedly stabilized, as evidenced by increased Tm values compared to TBA. These favorable properties were also associated with improved anticoagulant activity for one DAN/NDI-modified TBA, and for one NDI/NDI-modified TBA. Our results indicated that TBA pseudo-cyclic structuring by ad hoc designed end-functionalization represents an efficient approach to improve the aptamer features, while pre-organizing and stabilizing the G4 structure but allowing sufficient flexibility to the aptamer folding, which is necessary for optimal thrombin recognition.


Assuntos
Anticoagulantes/química , Aptâmeros de Nucleotídeos/química , Quadruplex G , Álcoois/química , Anticoagulantes/farmacologia , Avaliação Pré-Clínica de Medicamentos , Imidas/química , Naftalenos/química
5.
Molecules ; 26(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770999

RESUMO

The integration of nuclear imaging analysis with nanomedicine has tremendously grown and represents a valid and powerful tool for the development and clinical translation of drug delivery systems. Among the various types of nanostructures used as drug carriers, nanovesicles represent intriguing platforms due to their capability to entrap both lipophilic and hydrophilic agents, and their well-known biocompatibility and biodegradability. In this respect, here we present the development of a labelling procedure of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)-based liposomes incorporating an ad hoc designed lipophilic NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) analogue, derivatized with an oleic acid residue, able to bind the positron emitter gallium-68(III). Based on POPC features, the optimal conditions for liposome labelling were studied with the aim of optimizing the Ga(III) incorporation and obtaining a significant radiochemical yield. The data presented in this work demonstrate the feasibility of the labelling procedure on POPC liposomes co-formulated with the ad hoc designed NOTA analogue. We thus provided a critical insight into the practical aspects of the development of vesicles for theranostic approaches, which in principle can be extended to other nanosystems exploiting a variety of bioconjugation protocols.


Assuntos
Nanopartículas/química , Difração de Nêutrons , Fosfatidilcolinas/química , Espalhamento a Baixo Ângulo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Estrutura Molecular , Nanomedicina , Fosfatidilcolinas/síntese química
6.
Langmuir ; 36(30): 8777-8791, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32575987

RESUMO

Nanoparticles (NPs) are increasingly exploited as diagnostic and therapeutic devices in medicine. Among them, superparamagnetic nanoparticles (SPIONs) represent very promising tools for magnetic resonance imaging, local heaters for hyperthermia, and nanoplatforms for multimodal imaging and theranostics. However, the use of NPs, including SPIONs, in medicine presents several issues: first, the encounter with the biological world and proteins in particular. Indeed, nanoparticles can suffer from protein adsorption, which can affect NP functionality and biocompatibility. In this respect, we have investigated the interaction of small SPIONs covered by an amphiphilic double layer of oleic acid/oleylamine and 1-octadecanoyl-sn-glycero-3-phosphocholine with two abundant human plasma proteins, human serum albumin (HSA) and human transferrin. By means of spectroscopic and scattering techniques, we analyzed the effect of SPIONs on protein structure and the binding affinities, and only found strong binding in the case of HSA. In no case did SPIONs alter the protein structure significantly. We structurally characterized HSA/SPIONs complexes by means of light and neutron scattering, highlighting the formation of a monolayer of protein molecules on the NP surface. Their interaction with lipid bilayers mimicking biological membranes was investigated by means of neutron reflectivity. We show that HSA/SPIONs do not affect lipid bilayer features and could be further exploited as a nanoplatform for future applications. Overall, our findings point toward a high biocompatibility of phosphocholine-decorated SPIONs and support their use in nanomedicine.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Albuminas , Proteínas Sanguíneas , Humanos , Nanopartículas de Magnetita/toxicidade , Nanomedicina , Fosforilcolina
7.
Soft Matter ; 16(46): 10425-10438, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33165495

RESUMO

Polyunsaturated omega-3 fatty acid docosahexaenoic acid (DHA) is found in very high concentrations in a few peculiar tissues, suggesting that it must have a specialized role. DHA was proposed to affect the function of the cell membrane and related proteins through an indirect mechanism of action, based on the DHA-phospholipid effects on the lipid bilayer structure. In this respect, most studies have focused on its influence on lipid-rafts, somehow neglecting the analysis of effects on liquid disordered phases that constitute most of the cell membranes, by reporting in these cases only a general fluidifying effect. In this study, by combining neutron reflectivity, cryo-transmission electron microscopy, small angle neutron scattering, dynamic light scattering and electron paramagnetic resonance spectroscopy, we characterize liquid disordered bilayers formed by the naturally abundant 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and different contents of a di-DHA glycero-phosphocholine, 22:6-22:6PC, from both a molecular/microscopic and supramolecular/mesoscopic viewpoint. We show that, below a threshold concentration of about 40% molar percent, incorporation of 22:6-22:6PC in the membrane increases the lipid dynamics slightly but sufficiently to promote the membrane deformation and increase of multilamellarity. Notably, beyond this threshold, 22:6-22:6PC disfavours the formation of lamellar phases, leading to a phase separation consisting mostly of small spherical particles that coexist with a minority portion of a lipid blob with water-filled cavities. Concurrently, from a molecular viewpoint, the polyunsaturated acyl chains tend to fold and expose the termini to the aqueous medium. We propose that this peculiar tendency is a key feature of the DHA-phospholipids making them able to modulate the local morphology of biomembranes.


Assuntos
Ácidos Graxos Ômega-3 , Bicamadas Lipídicas , Ácidos Docosa-Hexaenoicos , Microdomínios da Membrana , Fosfatidilcolinas , Fosfolipídeos
8.
Bioorg Chem ; 94: 103379, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31699393

RESUMO

A small library of cyclic TBA analogues (named cycTBA I-IV), obtained by covalently connecting its 5'- and 3'-ends with flexible linkers, has been synthesized with the aim of improving its chemical and enzymatic stability, as well as its anticoagulant properties. Two chemical procedures have been exploited to achieve the desired cyclization, based on the oxime ligation method (providing cycTBA I and II) or on Cu(I)-assisted azide-alkyne cycloaddition (CuAAC) protocols (for cycTBA III and IV), leading to analogues containing circularizing linkers with different chemical nature and length, overall spanning from 22 to 48 atoms. The resulting cyclic TBAs have been characterized using a variety of biophysical methods (UV, CD, gel electrophoresis, SE-HPLC analyses) and then tested for their serum resistance and anticoagulant activity under in vitro experiments. A fine-tuning of the length and flexibility of the linker allowed identifying a cyclic analogue, cycTBA II, with improved anticoagulant activity, associated with a dramatically stabilized G-quadruplex structure (ΔTm = +17 °C) and a 6.6-fold higher enzymatic resistance in serum compared to unmodified TBA.


Assuntos
Anticoagulantes/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Anticoagulantes/síntese química , Anticoagulantes/química , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/química , Ciclização , Relação Dose-Resposta a Droga , Estrutura Molecular , Relação Estrutura-Atividade
9.
Nucleic Acids Res ; 46(22): 12177-12185, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30357392

RESUMO

Despite aptamers are very promising alternative to antibodies, very few of them are under clinical trials or are used as drugs. Among them, NU172 is currently in Phase II as anticoagulant in heart disease treatments. It inhibits thrombin activity much more effectively than TBA, the best-known thrombin binding aptamer. The crystal structure of thrombin-NU172 complex reveals a bimodular duplex/quadruplex architecture for the aptamer, which binds thrombin exosite I through a highly complementary surface involving all three loops of the G-quadruplex module. Although the duplex domain does not interact directly with thrombin, the features of the duplex/quadruplex junction and the solution data on two newly designed NU172 mutants indicate that the duplex moiety is important for the optimization of the protein-ligand interaction and for the inhibition of the enzyme activity. Our work discloses the structural features determining the inhibition of thrombin by NU172 and put the basis for the design of mutants with improved properties.


Assuntos
Aptâmeros de Nucleotídeos/química , Fibrinolíticos/química , Trombina/química , Motivos de Aminoácidos , Anticoagulantes/química , Dicroísmo Circular , Cristalografia por Raios X , Fibrinogênio/química , Quadruplex G , Humanos , Ligantes , Modelos Moleculares , Mutação , Oligonucleotídeos/química , Ligação Proteica , Conformação Proteica
10.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485818

RESUMO

NU172-a 26-mer oligonucleotide able to bind exosite I of human thrombin and inhibit its activity-was the first aptamer to reach Phase II clinical studies as an anticoagulant in heart disease treatments. With the aim of favoring its functional duplex-quadruplex conformation and thus improving its enzymatic stability, as well as its thrombin inhibitory activity, herein a focused set of cyclic NU172 analogues-obtained by connecting its 5'- and 3'-extremities with flexible linkers-was synthesized. Two different chemical approaches were exploited in the cyclization procedure, one based on the oxime ligation method and the other on Cu(I)-assisted azide-alkyne cycloaddition (CuAAC), affording NU172 analogues including circularizing linkers with different length and chemical nature. The resulting cyclic NU172 derivatives were characterized using several biophysical techniques (ultraviolet (UV) and circular dichroism (CD) spectroscopies, gel electrophoresis) and then investigated for their serum resistance and anticoagulant activity in vitro. All the cyclic NU172 analogues showed higher thermal stability and nuclease resistance compared to unmodified NU172. These favorable properties were, however, associated with reduced-even though still significant-anticoagulant activity, suggesting that the conformational constraints introduced upon cyclization were somehow detrimental for protein recognition. These results provide useful information for the design of improved analogues of NU172 and related duplex-quadruplex structures.


Assuntos
Anticoagulantes/síntese química , Aptâmeros de Nucleotídeos/síntese química , Dicroísmo Circular , Reação de Cicloadição/métodos , Fibrinogênio/química , Quadruplex G , Oximas/química , Raios Ultravioleta
11.
Chembiochem ; 20(14): 1789-1794, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30860635

RESUMO

With the aim of developing a new approach to obtain improved aptamers, a cyclic thrombin-binding aptamer (TBA) analogue (cycTBA) has been prepared by exploiting a copper(I)-assisted azide-alkyne cycloaddition. The markedly increased serum resistance and exceptional thermal stability of the G-quadruplex versus TBA were associated with halved thrombin inhibition, which suggested that some flexibility in the TBA structure was necessary for protein recognition.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/genética , Dicroísmo Circular , Ciclização , Quadruplex G , Humanos , Estudo de Prova de Conceito , Trombina/antagonistas & inibidores , Temperatura de Transição
12.
Nucleic Acids Res ; 45(1): 461-469, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899589

RESUMO

Aptamers directed against human thrombin can selectively bind to two different exosites on the protein surface. The simultaneous use of two DNA aptamers, HD1 and HD22, directed to exosite I and exosite II respectively, is a very powerful approach to exploit their combined affinity. Indeed, strategies to link HD1 and HD22 together have been proposed in order to create a single bivalent molecule with an enhanced ability to control thrombin activity. In this work, the crystal structures of two ternary complexes, in which thrombin is sandwiched between two DNA aptamers, are presented and discussed. The structures shed light on the cross talk between the two exosites. The through-bond effects are particularly evident at exosite II, with net consequences on the HD22 structure. Moreover, thermodynamic data on the binding of the two aptamers are also reported and analyzed.


Assuntos
Aptâmeros de Nucleotídeos/química , Trombina/química , Aptâmeros de Nucleotídeos/síntese química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Termodinâmica , Trombina/antagonistas & inibidores
13.
Nanomedicine ; 18: 135-145, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30849548

RESUMO

We report here the preparation, physico-chemical characterization, and biological evaluation of a new liposome formulation as a tool for tumor angiogenesis inhibition. Liposomes are loaded with sunitinib, a tyrosine kinase inhibitor, and decorated with cyclo-aminoprolineRGD units (cAmpRGD), efficient and selective ligands for integrin αVß3. The RGD units play multiple roles since they target the nanovehicles at the integrin αVß3-overexpressing cells (e.g. activated endothelial cells), favor their active cell internalization, providing drug accumulation in the cytoplasm, and likely take part in the angiogenesis inhibition by interfering in the αVß3-VEGFR2 cross-talk. Both in vitro and in vivo studies show a better efficacy of this integrated antiangiogenic tool with respect to the free sunitinib and untargeted sunitinib-loaded liposomes. This system could allow a lower administration of the drug and, by increasing the vector specificity, reduce side-effects in a prolonged antiangiogenic therapy.


Assuntos
Inibidores da Angiogênese/farmacologia , Integrina alfaVbeta3/metabolismo , Oligopeptídeos/química , Prolina/análogos & derivados , Sunitinibe/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/uso terapêutico , Animais , Adesão Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Humanos , Recém-Nascido , Lipídeos/química , Lipossomos , Camundongos , Nanopartículas/química , Neovascularização Patológica/tratamento farmacológico , Oligopeptídeos/síntese química , Fosfolipídeos/síntese química , Fosfolipídeos/química , Fosforilação/efeitos dos fármacos , Prolina/síntese química , Prolina/química , Sunitinibe/química , Sunitinibe/uso terapêutico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vitronectina/metabolismo
14.
Nucleic Acids Res ; 44(2): 983-91, 2016 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-26673709

RESUMO

Mixed duplex/quadruplex oligonucleotides have attracted great interest as therapeutic targets as well as effective biomedical aptamers. In the case of thrombin-binding aptamer (TBA), the addition of a duplex motif to the G-quadruplex module improves the aptamer resistance to biodegradation and the affinity for thrombin. In particular, the mixed oligonucleotide RE31 is significantly more effective than TBA in anticoagulation experiments and shows a slower disappearance rate in human plasma and blood. In the crystal structure of the complex with thrombin, RE31 adopts an elongated structure in which the duplex and quadruplex regions are perfectly stacked on top of each other, firmly connected by a well-structured junction. The lock-and-key shape complementarity between the TT loops of the G-quadruplex and the protein exosite I gives rise to the basic interaction that stabilizes the complex. However, our data suggest that the duplex motif may have an active role in determining the greater anti-thrombin activity in biological fluids with respect to TBA. This work gives new information on mixed oligonucleotides and highlights the importance of structural data on duplex/quadruplex junctions, which appear to be varied, unpredictable, and fundamental in determining the aptamer functional properties.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Trombina/química , Aptâmeros de Nucleotídeos/farmacologia , Cristalografia por Raios X , Quadruplex G , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Trombina/antagonistas & inibidores , Trombina/metabolismo
15.
J Am Chem Soc ; 138(4): 1226-33, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26730610

RESUMO

We report here on an X-ray crystallographic and molecular modeling investigation into the complex 3' interface formed between putative parallel stranded G-quadruplexes and a duplex DNA sequence constructed from the human telomeric repeat sequence TTAGGG. Our crystallographic approach provides a detailed snapshot of a telomeric 3' quadruplex-duplex junction: a junction that appears to have the potential to form a unique molecular target for small molecule binding and interference with telomere-related functions. This unique target is particularly relevant as current high-affinity compounds that bind putative G-quadruplex forming sequences only rarely have a high degree of selectivity for a particular quadruplex. Here DNA junctions were assembled using different putative quadruplex-forming scaffolds linked at the 3' end to a telomeric duplex sequence and annealed to a complementary strand. We successfully generated a series of G-quadruplex-duplex containing crystals, both alone and in the presence of ligands. The structures demonstrate the formation of a parallel folded G-quadruplex and a B-form duplex DNA stacked coaxially. Most strikingly, structural data reveals the consistent formation of a TAT triad platform between the two motifs. This triad allows for a continuous stack of bases to link the quadruplex motif with the duplex region. For these crystal structures formed in the absence of ligands, the TAT triad interface occludes ligand binding at the 3' quadruplex-duplex interface, in agreement with in silico docking predictions. However, with the rearrangement of a single nucleotide, a stable pocket can be produced, thus providing an opportunity for the binding of selective molecules at the interface.


Assuntos
Telômero , Cristalografia por Raios X , Quadruplex G , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico
16.
J Biol Inorg Chem ; 21(4): 433-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27040953

RESUMO

The products of the reaction between cisplatin (CDDP) and the model protein hen egg white lysozyme (HEWL) at 20, 37 and 55 °C in pure water were studied by UV-Vis absorption spectroscopy, intrinsic fluorescence and circular dichroism, dynamic and electrophoretic light scattering and inductively coupled plasma mass spectrometry. X-ray structures were also solved for the adducts formed at 20 and 55 °C. Data demonstrate that high temperature facilitates the formation of CDDP-HEWL adducts, where Pt atoms bind ND1 atom of His15 or NE2 atom of His15 and NH1 atom of Arg14. Our study suggests that high human body temperature (fever) could increase the rate of drug binding to proteins thus enhancing possible toxic side effects related to CDDP administration.


Assuntos
Cisplatino/química , Muramidase/química , Temperatura , Animais , Galinhas , Cisplatino/farmacologia , Cristalografia por Raios X , Modelos Moleculares , Muramidase/antagonistas & inibidores , Relação Estrutura-Atividade
17.
Inorg Chem ; 55(16): 7814-6, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27482735

RESUMO

Literature studies carried out by mass spectrometry and X-ray crystallography have demonstrated that cisplatin is able to bind proteins mainly close to Met, His, and free Cys side chains. To identify possible alternative modes of cisplatin binding to proteins at the molecular level, here we have solved the high-resolution X-ray structure of the adduct formed in the reaction between the drug and the model protein thaumatin, which does not contain any His and free Cys residues and possesses just one buried Met. Our data reveal unexpected cisplatin binding sites on the protein surface that could have general significance: cisplatin fragments -[Pt(NH3)2Cl](+), -[Pt(NH3)Cl2], and -[Pt(NH3)2(OH2)](2+) bind to a protein N-terminus and close to Lys and Glu side chains.


Assuntos
Cisplatino/química , Lisina/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sítios de Ligação , Cisplatino/metabolismo , Cristalografia por Raios X , Hidrólise , Conformação Proteica , Espectrofotometria Ultravioleta
18.
Biochim Biophys Acta ; 1844(3): 632-40, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24440460

RESUMO

A peculiar feature of the psychrophilic iron superoxide dismutase from Pseudoalteromonas haloplanktis (PhSOD) is the presence in its amino acid sequence of a reactive cysteine (Cys57). To define the role of this residue, a structural characterization of the effect of two PhSOD mutations, C57S and C57R, was performed. Thermal and denaturant-induced unfolding of wild type and mutant PhSOD followed by circular dichroism and fluorescence studies revealed that C→R substitution alters the thermal stability and the resistance against denaturants of the enzyme, whereas C57S only alters the stability of the protein against urea. The crystallographic data on the C57R mutation suggest an involvement of the Arg side chain in the formation of salt bridges on protein surface. These findings support the hypothesis that the thermal resistance of PhSOD relies on optimization of charge-charge interactions on its surface. Our study contributes to a deeper understanding of the denaturation mechanism of superoxide dismutases, suggesting the presence of a structural dimeric intermediate between the native state and the unfolded state. This hypothesis is supported by the crystalline and solution data on the reduced form of the enzyme.


Assuntos
Temperatura Baixa , Mutação , Superóxido Dismutase/química , Dicroísmo Circular , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Espectrometria de Fluorescência , Eletricidade Estática , Superóxido Dismutase/genética
19.
Biochim Biophys Acta ; 1834(1): 149-57, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23036908

RESUMO

The transpeptidation activity of γ-glutamyltranspeptidase from Geobacillus thermodenitrificans (GthGT) is negligible and the enzyme is highly thermostable. Here we have examined the effect of concentrated NaCl solutions on structure, stability, dynamics and enzymatic activity of GthGT. The protein exhibited hydrolytic activity over a broad range of NaCl concentrations. Even at 4.0M NaCl, GthGT retained more than 90% of the initial activity and showed unaltered fluorescence emission, secondary structure and acrylamide quenching on tryptophan fluorescence. Furthermore, at 2.8M and 4.0M NaCl the temperature-induced unfolding profiles are dramatically changed with large (>20°C) positive shifts in the denaturation temperature. These features make GthGT an ideal system to be used in industrial processes that require high temperatures and high-salt environments. A general explanation of the NaCl effect by means of a statistical thermodynamic model is also provided, together with an analysis of residue distribution between protein surface and interior in 15 non-redundant families of halophilic and non-halophilic proteins. The results are in line with a comparative sequence and structural analysis between halophilic and non-halophilic γ-glutamyltranspeptidases which revealed that a major role in halotolerance should be played by solvent exposed negatively charged residues.


Assuntos
Proteínas de Bactérias/química , Geobacillus/enzimologia , Cloreto de Sódio/química , gama-Glutamiltransferase/química , Estabilidade Enzimática/fisiologia , Estrutura Secundária de Proteína
20.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 362-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531470

RESUMO

Locked nucleic acids (LNAs) are formed by bicyclic ribonucleotides where the O2' and C4' atoms are linked through a methylene bridge and the sugar is blocked in a 3'-endo conformation. They represent a promising tool for therapeutic and diagnostic applications and are characterized by higher thermal stability and nuclease resistance with respect to their natural counterparts. However, structural descriptions of LNA-containing quadruplexes are rather limited, since few NMR models have been reported in the literature. Here, the first crystallographically derived model of an all-LNA-substituted quadruplex-forming sequence 5'-TGGGT-3' is presented refined at 1.7 Šresolution. This high-resolution crystallographic analysis reveals a regular parallel G-quadruplex arrangement terminating in a well defined thymine tetrad at the 3'-end. The detailed picture of the hydration pattern reveals LNA-specific features in the solvent distribution. Interestingly, two closely packed quadruplexes are present in the asymmetric unit. They face one another with their 3'-ends giving rise to a compact higher-order structure. This new assembly suggests a possible way in which sequential quadruplexes can be disposed in the crowded cell environment. Furthermore, as the formation of ordered structures by molecular self-assembly is an effective strategy to obtain nanostructures, this study could open the way to the design of a new class of LNA-based building blocks for nanotechnology.


Assuntos
Quadruplex G , Oligonucleotídeos/química , Timina/química , Cristalografia por Raios X , Modelos Moleculares , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa