Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Parasitol Res ; 120(3): 1037-1047, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33459848

RESUMO

A new coccidian species, Isospora lugensae n. sp., was described from a single Kerguelen petrel (Lugensa brevirostris). Sporulated oocysts (n = 25) were characterized as subspheroidal to ellipsoidal measuring 24-25 µm × 21-23 µm (24.8 × 22.2 µm) in length/width (L/W), respectively, with a ratio of 1.07-1.14 µm (1.12). They contained a bi-layered wall with a thickness of 0.8-1.2 µm (1.0) and the outer layer smooth, with c.2/3 of total thickness. The oocyst contained two polar granules with both micropyle and oocyst residuum absent. Ovoidal sporocysts (n = 25) measured 15-16 µm × 10-11 µm (15.7 × 10.8 µm) in L/W, with a ratio of 1.41-1.49 µm (1.46). A flattened to knob-like Stieda body was present (c.0.5 µm deep × 2.5 µm wide) as well as a rounded to trapezoidal sub-Stieda (c.1.5 µm deep × 3.0 µm wide); however, no para-Stieda body was detected. The sporocyst residuum was composed of scattered spherules of different sizes, while vermiform sporozoites contained a refractile body, nucleus and visible striations. Analysis of the full-length mitochrondrial (mtDNA) genome revealed 3 protein-coding genes, (CytB, COI and COIII), 18 LSU and 14 small subunit (SSU) rDNA fragments, without transfer RNA genes with a total length of 6257 bp. Phylogenetic analysis of genomic SSU ribosomal sequences indicated that Isospora lugensae n. sp. is genetically similar to Eimeria reichenowi, isolated from a red-crowned crane (Grus japonensis) from Japan, with a 96.6% homology. The mtDNA sequence is most similar to Isospora serinuse with a 95.8% genetic similarity. Based on morphological and molecular data, this isolate is a new species of coccidian parasite that to date has only been found in a Kerguelen petrel.


Assuntos
Doenças das Aves/parasitologia , Isospora/classificação , Isosporíase/veterinária , Animais , Aves , DNA Mitocondrial/química , DNA de Protozoário/química , Eimeria/classificação , Fezes/parasitologia , Trato Gastrointestinal/parasitologia , Isospora/genética , Isospora/ultraestrutura , Isosporíase/parasitologia , Japão , Oocistos/ultraestrutura , Filogenia , Esporozoítos , Austrália Ocidental
2.
Parasitology ; 147(14): 1801-1809, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32981530

RESUMO

Trypanosomes are blood-borne parasites that can infect a variety of different vertebrates, including animals and humans. This study aims to broaden scientific knowledge about the presence and biodiversity of trypanosomes in Australian bats. Molecular and morphological analysis was performed on 86 blood samples collected from seven different species of microbats in Western Australia. Phylogenetic analysis on 18S rDNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) sequences identified Trypanosoma dionisii in five different Australian native species of microbats; Chalinolobus gouldii, Chalinolobus morio, Nyctophilus geoffroyi, Nyctophilus major and Scotorepens balstoni. In addition, two novels, genetically distinct T. dionisii genotypes were detected and named T. dionisii genotype Aus 1 and T. dionisii genotype Aus 2. Genotype Aus 2 was the most prevalent and infected 20.9% (18/86) of bats in the present study, while genotype Aus 1 was less prevalent and was identified in 5.8% (5/86) of Australian bats. Morphological analysis was conducted on trypomastigotes identified in blood films, with morphological parameters consistent with trypanosome species in the subgenus Schizotrypanum. This is the first report of T. dionisii in Australia and in Australian native bats, which further contributes to the global distribution of this cosmopolitan bat trypanosome.


Assuntos
Quirópteros , Trypanosoma/isolamento & purificação , Tripanossomíase/veterinária , Animais , Gliceraldeído-3-Fosfato Desidrogenases/análise , Microcorpos/química , Prevalência , Proteínas de Protozoários/análise , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Trypanosoma/enzimologia , Trypanosoma/genética , Tripanossomíase/epidemiologia , Austrália Ocidental/epidemiologia
3.
Parasitol Res ; 119(11): 3729-3737, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32779020

RESUMO

A new Eimeria species is described from a common bronzewing pigeon (Phaps chalcoptera) (Latham, 1790) in Western Australia. Sporulated oocysts of Eimeria chalcoptereae n. sp. (n = 30) are subspheroidal, 22-25 × 21-24 (23.5 × 22.6) µm; length/width (L/W) ratio 1.0-1.1 (1.04) µm. Wall bi-layered, 1.0-1.4 (1.2) µm thick, outer layer smooth, c.2/3 of total thickness. Micropyle barely discernible. Oocyst residuum is absent, but 2 to 3 small polar granules are present. Sporocysts (n = 30) ellipsoidal, 13-14 × 7-8 (13.5 × 7.2) µm; L/W ratio 1.8-2.0 (1.88). Stieda body present, flattened to half-moon-shaped, 0.5 × 2.0 µm; sub-Stieda present, rounded to trapezoidal, 1.5 × 2.5 µm; para-Stieda body absent; sporocyst residuum present, usually as an irregular body consisting of numerous small granules that appear to be membrane-bound. Sporozoites vermiform, with a robust refractile body and centrally located nucleus. Isolated Eimeria oocysts were analysed at the 18S and 28S ribosomal RNA and the mitochondrial cytochrome oxidase (COI) loci. Analyses revealed that Eimeria chalcoptereae n. sp. shared the highest number of molecular features with an Eimeria sp. previously identified from a domestic pigeon in Australia (KT305927-29), with similarities at these three loci of 98.53%, 97.32% and 94.93%, respectively. According to morphological and molecular analysis, the isolated coccidian parasite is a new species of Eimeria named Eimeria chalcoptereae n. sp. after its host, the common bronzewing pigeon (Phaps chalcoptera) (Columbiformes: Columbidae) (Latham, 1790).


Assuntos
Doenças das Aves/parasitologia , Coccidiose/veterinária , Columbidae/parasitologia , Eimeria/citologia , Eimeria/genética , Animais , Coccidiose/parasitologia , DNA de Protozoário/genética , Eimeria/classificação , Eimeria/crescimento & desenvolvimento , Complexo IV da Cadeia de Transporte de Elétrons/genética , Oocistos/citologia , Filogenia , Proteínas de Protozoários/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Esporozoítos/citologia , Austrália Ocidental
4.
Parasitol Res ; 119(5): 1691-1696, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32198627

RESUMO

Invasive rodent species are known hosts for a diverse range of infectious microorganisms and have long been associated with the spread of disease globally. The present study describes molecular evidence for the presence of a Trypanosoma sp. from black rats (Rattus rattus) in northern Sydney, Australia. Sequences of the 18S ribosomal RNA (rRNA) locus were obtained in two out of eleven (18%) blood samples with subsequent phylogenetic analysis confirming the identity within the Trypanosoma lewisi clade.


Assuntos
Trypanosoma lewisi/classificação , Trypanosoma lewisi/genética , Tripanossomíase/diagnóstico , Animais , Austrália , Espécies Introduzidas , Filogenia , RNA Ribossômico 18S/genética , Ratos , Roedores/parasitologia , Tripanossomíase/veterinária
5.
Parasitology ; 144(13): 1811-1820, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28805163

RESUMO

Currently, the systematics, biology and epidemiology of piscine Cryptosporidium species are poorly understood. Here, we compared Sanger ‒ and next-generation ‒ sequencing (NGS), of piscine Cryptosporidium, at the 18S rRNA and actin genes. The hosts comprised 11 ornamental fish species, spanning four orders and eight families. The objectives were: to (i) confirm the rich genetic diversity of the parasite and the high frequency of mixed infections; and (ii) explore the potential of NGS in the presence of complex genetic mixtures. By Sanger sequencing, four main genotypes were obtained at the actin locus, while for the 18S locus, seven genotypes were identified. At both loci, NGS revealed frequent mixed infections, consisting of one highly dominant variant plus substantially rarer genotypes. Both sequencing methods detected novel Cryptosporidium genotypes at both loci, including a novel and highly abundant actin genotype that was identified by both Sanger sequencing and NGS. Importantly, this genotype accounted for 68·9% of all NGS reads from all samples (249 585/362 372). The present study confirms that aquarium fish can harbour a large and unexplored Cryptosporidium genetic diversity. Although commonly used in molecular parasitology studies, nested PCR prevents quantitative comparisons and thwarts the advantages of NGS, when this latter approach is used to investigate multiple infections.


Assuntos
Coinfecção/veterinária , Criptosporidiose/diagnóstico , Cryptosporidium/isolamento & purificação , Doenças dos Peixes/diagnóstico , Peixes , Variação Genética , Actinas/análise , Animais , Coinfecção/diagnóstico , Coinfecção/parasitologia , Criptosporidiose/parasitologia , Doenças dos Peixes/parasitologia , Filogenia , Proteínas de Protozoários/análise , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Análise de Sequência de RNA/veterinária
6.
Exp Parasitol ; 151-152: 21-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25662433

RESUMO

Cryptosporidium is an important enteric pathogen that infects a wide range of humans and animals. Rapid and reliable detection and characterisation methods are essential for understanding the transmission dynamics of the parasite. Sanger sequencing, and high-throughput sequencing (HTS) on an Ion Torrent platform, were compared with each other for their sensitivity and accuracy in detecting and characterising 25 Cryptosporidium-positive human and animal faecal samples. Ion Torrent reads (n = 123,857) were obtained at both 18S rRNA and actin loci for 21 of the 25 samples. Of these, one isolate at the actin locus (Cattle 05) and three at the 18S rRNA locus (HTS 10, HTS 11 and HTS 12), suffered PCR drop-out (i.e. PCR failures) when using fusion-tagged PCR. Sanger sequences were obtained for both loci for 23 of the 25 samples and showed good agreement with Ion Torrent-based genotyping. Two samples both from pythons (SK 02 and SK 05) produced mixed 18S and actin chromatograms by Sanger sequencing but were clearly identified by Ion Torrent sequencing as C. muris. One isolate (SK 03) was typed as C. muris by Sanger sequencing but was identified as a mixed C. muris and C. tyzzeri infection by HTS. 18S rRNA Type B sequences were identified in 4/6 C. parvum isolates when deep sequenced but were undetected in Sanger sequencing. Sanger was cheaper than Ion Torrent when sequencing a small numbers of samples, but when larger numbers of samples are considered (n = 60), the costs were comparative. Fusion-tagged amplicon based approaches are a powerful way of approaching mixtures, the only draw-back being the loss of PCR efficiency on low-template samples when using primers coupled to MID tags and adaptors. Taken together these data show that HTS has excellent potential for revealing the "true" composition of species/types in a Cryptosporidium infection, but that HTS workflows need to be carefully developed to ensure sensitivity, accuracy and contamination are controlled.


Assuntos
Actinas/genética , Cryptosporidium/classificação , Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 18S/genética , Animais , Boidae/parasitologia , Bovinos , Custos e Análise de Custo , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Fezes/parasitologia , Técnicas de Genotipagem/economia , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos
7.
Exp Parasitol ; 141: 93-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24675416

RESUMO

In 2012, the first autochthonous Australian case of human babesiosis was reported, after microscopic examinations of blood samples revealed intra-erythrocytic parasites in a hospitalized 56year-old man from NSW, who died in 2011 (Senanayake et al., 2012). Independent molecular analyses carried out in Australia and the USA, identified Babesia microti at the 18S ribosomal RNA (18S rRNA), and the beta-tubulin (ß-tubulin) gene loci. Here we present the details of a novel PCR-based assay for the ß-tubulin gene that was developed, during the original study, to corroborate the results obtained from the analysis of the 18S rDNA. The complete phylogenetic reconstruction, based on the two loci sequenced from the Australian clinical isolate, is also shown here for the first time.


Assuntos
Babesia microti/genética , Babesiose/diagnóstico , Primers do DNA/química , Tubulina (Proteína)/genética , Animais , Austrália , Babesia microti/classificação , Babesia microti/isolamento & purificação , Babesiose/parasitologia , Sequência de Bases , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , DNA Ribossômico/química , Cães , Eritrócitos/parasitologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Potoroidae , RNA Ribossômico 18S/genética , Sensibilidade e Especificidade , Tubulina (Proteína)/metabolismo
8.
Exp Parasitol ; 145: 42-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25045852

RESUMO

Little is known about the prevalence and pathogenesis of trypanosomes in Australian monotremes, and few genetic characterisation studies have been conducted with these haemoparasites. During the present investigation, molecular and microscopic methods were used to screen peripheral blood (n=28) and ectoparasites (n=10 adult ticks; n=5 tick nymphs; n=1 leech; and n>500 tick eggs) collected from wild Tasmanian platypuses (Ornithorhynchus anatinus), for the presence of trypanosomatid-specific DNA and/or trypomastigotes. The genes for the small ribosomal subunit RNA (18S rDNA) and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) were amplified and sequenced, prior to conducting phylogenetic analyses. The detection rate of the parasite-specific 18S rDNA in platypus blood was 85.7% (n=24/28), and the leech was also positive at both loci. Microscopically, high parasitaemia and the presence of abundant trypomastigotes, morphologically consistent with Trypanosoma binneyi Mackerras (1959), were observed in the blood films. Phylogenetic analyses at the 18S locus revealed the existence of four trypanosomatid-like genotypes, with variable similarity to two previously-described genotypes of T. binneyi (range of genetic p-distance: 0.0-0.5%). For the gGAPDH locus, for which only one T. binneyi sequence is available in GenBank, three genotypes closely related T. binneyi were identified (range of genetic p-distance: 0.1-0.4%). The leech-derived trypanosome isolate was virtually identical (at the two loci studied) to the other parasites sequenced from infected platypuses; however, the molecular or morphological identification of the leech species was not possible. Although further studies are required, the molecular detection of trypanosomes in an aquatic leech removed from a platypus, suggests the possibility that these haematophagous hirudineans may be a vector for T. binneyi (and closely related genotypes).


Assuntos
Vetores de Doenças/classificação , Sanguessugas/parasitologia , Ornitorrinco/parasitologia , Trypanosoma/genética , Tripanossomíase/veterinária , Animais , Animais Selvagens , DNA de Protozoário/isolamento & purificação , DNA Ribossômico/isolamento & purificação , Feminino , Genótipo , Ixodes/classificação , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Tasmânia , Infestações por Carrapato/parasitologia , Infestações por Carrapato/veterinária , Trypanosoma/classificação , Trypanosoma/isolamento & purificação , Tripanossomíase/parasitologia , Tripanossomíase/transmissão
9.
Parasitol Res ; 113(12): 4407-14, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25204728

RESUMO

Blood and ectoparasitic ticks were collected from migratory seabirds in New Zealand, including Australasian gannets (n = 13) from two sites and red-billed gulls (n = 9) and white-fronted terns (n = 2) from a third location. Blood smears were screened for parasite presence by microscopy, while DNA from blood samples was subjected to PCR for the presence of tick-transmitted protozoan haemoparasites belonging to the order Piroplasmida. Parasites were identified by comparing small subunit ribosomal RNA (18S rDNA) gene sequences to related sequences on GenBank. Analyses indicated that nine birds were infected with unknown variants of a Babesia poelea-like parasite (recorded as genotypes I and II), while four harboured a piroplasm that was genetically similar to Babesia kiwiensis. There was no parasite stratification by bird species; both the gannets and gulls were positive for all three parasites, while the terns were positive for the B. kiwiensis-like and the B. poelea-like (genotype I) parasites. The B. kiwiensis-like parasite found in the birds was also found in two species of ticks: Carios capensis and Ixodes eudyptidis. This represents the first report of Babesia-positive ticks parasitising seabirds in New Zealand. The lack of host specificity and evidence of wide ranging distributions of the three piroplasm genotypes suggests there is a high degree of haemoparasite transmission occurring naturally between New Zealand seabird populations and species.


Assuntos
Babesia/classificação , Babesiose/parasitologia , Doenças das Aves/parasitologia , Charadriiformes/parasitologia , Migração Animal , Animais , Vetores Aracnídeos/parasitologia , Argasidae/parasitologia , Babesia/genética , Babesiose/epidemiologia , Doenças das Aves/epidemiologia , Aves , Citocromos b/genética , DNA de Protozoário/sangue , DNA de Protozoário/química , DNA Ribossômico/sangue , DNA Ribossômico/química , Feminino , Genótipo , Ixodes/parasitologia , Masculino , Nova Zelândia/epidemiologia , Filogenia , Reação em Cadeia da Polimerase/veterinária , RNA Ribossômico 18S/genética , Análise de Sequência de DNA/veterinária , Infestações por Carrapato/parasitologia , Infestações por Carrapato/veterinária
10.
Int J Parasitol ; 53(11-12): 651-661, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37328045

RESUMO

Cryptosporidium bovis and Cryptosporidium ryanae are common species causing cryptosporidiosis in cattle. Data accumulated thus far indicate that the infection patterns of the two species could be different between areas with and without Cryptosporidium parvum. To better understand the infection dynamics of these two species, cross-sectional and longitudinal studies of Cryptosporidium spp. were conducted using genotyping and subtyping tools. In the cross-sectional survey, analysis of 634 faecal samples from two farms identified only C. bovis and C. ryanae in pre-weaned calves. Two birth cohorts of 61 and 78 calves were followed longitudinally over a 12 month period, which revealed the shedding of C. bovis oocysts started at 1-2 weeks of age and peaked initially at 6-8 weeks of age. Altogether calves experienced four infections by six subtype families of C. bovis, with each infection caused by different subtype families. In contrast, the shedding of C. ryanae oocysts started at 2-4 weeks of age, and the two infections were caused by different subtype families. The cumulative incidence of C. bovis infection was 100% (58/58, 32/32) on both farms, compared with 84.4-98.3% (27/32 and 57/58) for C. ryanae infection. Overall, the mean duration of oocyst shedding in the cohort studies was 3.8-4.0 weeks for C. bovis compared with 2.1 weeks for C. ryanae. The oocyst shedding intensity was high (mean oocysts per gram of faeces was over 105) during the first infection with each species but became significantly lower in the later infections. Cryptosporidium ryanae was associated with the occurrence of diarrhea on one farm, while C. bovis was not. The data indicate that there is an early occurrence of C. bovis and C. ryanae in pre-weaned calves with high infection intensity in the absence of C. parvum. Calves infected with the same Cryptosporidium sp. multiple times could be associated with the presence of subtype-specific immunity.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium , Animais , Bovinos , Cryptosporidium/genética , Criptosporidiose/epidemiologia , Estudos Transversais , Seguimentos , Doenças dos Bovinos/epidemiologia , Fezes , Prevalência
11.
Exp Parasitol ; 131(4): 404-12, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22659228

RESUMO

As part of a broader investigation into the potential role of black rats (Rattus rattus) as disease vectors into native small mammal populations of northern Australia, blood and faecal samples from wild black rats were screened by molecular methods, for piroplasms (Babesia and Theileria), trypanosomes and the enteric parasite Cryptosporidium. While piroplasms and trypanosomes were not detected in the blood of these animals, the overall prevalence of Cryptosporidium 18S rDNA in faecal samples was 8.2% (7/85). Co-occurrence of multiple genotypes was observed in 57.1% of the infected individuals (4/7); cloning and re-sequencing resulted in 14 sequences which broadly grouped with Cryptosporidium sp. rat-genotypes II and III. A novel rat-derived Cryptosporidium sp. genotype at the actin locus was also obtained from five animals. The relatively low infection rate detected, and the epidemiological data on cryptosporidiosis, do not conclusively support a current threat to native Australian mammals from black rats carrying Cryptosporidium. However, this observation is based on sampling limited isolates, in limited regions. Further studies, also including sampling of native mammals, are required on larger sample sizes and from wider geographic areas, to determine the significance of these findings, including the public health importance of Cryptosporidium spp. from rodents.


Assuntos
Criptosporidiose/veterinária , Cryptosporidium/isolamento & purificação , Ratos/parasitologia , Doenças dos Roedores/parasitologia , Animais , Animais Selvagens , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium/classificação , Cryptosporidium/genética , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , DNA Ribossômico/química , DNA Ribossômico/isolamento & purificação , Vetores de Doenças , Fezes/parasitologia , Feminino , Genótipo , Masculino , Northern Territory/epidemiologia , Filogenia , Prevalência , RNA Ribossômico 18S/genética , Doenças dos Roedores/epidemiologia
12.
Exp Parasitol ; 131(1): 25-30, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22433913

RESUMO

Piroplasms, which include the genera Theileria and Babesia, are blood-borne parasites transmitted mainly by tick vectors. Relatively little is known about their prevalence and clinical impact in Australian marsupials. In the present study the occurrence and molecular phylogeny of these parasites were studied in both wild and captive marsupials from Western Australia (WA) and Queensland (QLD). Blood samples were screened by microscopy and molecular methods, using PCR and DNA sequencing of the 18S ribosomal RNA gene (18S rDNA). Overall, 7.1% of the blood samples (8/113) were positive for piroplasm 18S rDNA. Theileria and Babesia rDNA was detected in 0.9% (1/113) and 6.2% (7/113) of the animals, respectively. The single Theileria positive was identified in one of three boodies (Bettongia lesueur) screened from a wildlife rehabilitation centre in WA, while all seven Babesia positives were detected in WA in wild captured woylies (Bettongia penicillata ogilbyi). Small intraerythrocytic inclusions were observed in blood films made from six of these individuals. This is the first report of a Babesia sp. in woylies, and Theileria sp. in boodies. Phylogenetic analysis indicated that the woylie-derived Babesia was genetically distinct and most closely related to Babesia occultans, the causative agent of a benign form of cattle babesiosis (genetic similarity 98.4%). The Theileria identified was most closely related to the marsupial-derived species Theileria penicillata from the woylie, Theileria brachyuri from the quokka (Setonix brachyurus), and Theileria sp. from the long-nosed potoroo (Potorous tridactylus).


Assuntos
Babesia/classificação , Babesiose/veterinária , Espécies em Perigo de Extinção , Marsupiais/parasitologia , Theileria/classificação , Theileriose/parasitologia , Animais , Animais de Zoológico , Babesia/genética , Babesiose/sangue , Babesiose/parasitologia , DNA de Protozoário/sangue , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , DNA Ribossômico/sangue , DNA Ribossômico/química , DNA Ribossômico/isolamento & purificação , Genótipo , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Queensland , RNA Ribossômico 18S/genética , Theileria/genética , Theileriose/sangue , Austrália Ocidental
13.
Exp Parasitol ; 130(3): 308-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22230707

RESUMO

The dispute on the validity of Cryptosporidium pestis and Cryptosporidium tyzzeri origins from the uncertainty on the identity of Cryptosporidium parvum described by Tyzzer in 1912 and the interpretation of the Principal of Priority of the International Code of Zoological Nomenclature (ICZN). Using a rigid interpretation of the Principal of Priority, one researcher proposed to rename C. parvum as C. pestis and retain C. parvum for Cryptosporidium mouse genotype I on the basis that Tyzzer was probably describing mouse genotype I. However, the ICZN clearly states that the Principle of Priority is to be used to promote stability and is not intended to upset a long-accepted name. Because mice are known to be naturally infected with C. parvum, and the 1985 taxonomic re-description of C. parvum for bovine and human isolates is accepted by almost all Cryptosporidium researchers, the prevailing name C. parvum for the species infective to calves and humans must be retained to avoid confusion. The designation of C. tyzzeri for the mouse genotype I brings further clarity to the taxonomy of Cryptosporidium spp. in humans, cattle, and domestic mice.


Assuntos
Criptosporidiose/veterinária , Cryptosporidium/classificação , Camundongos/parasitologia , Doenças dos Roedores/parasitologia , Animais , Feminino , Masculino
14.
Pathogens ; 11(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36365042

RESUMO

In Australia, there is a paucity of data about the extent and impact of zoonotic tick-related illnesses. Even less is understood about a multifaceted illness referred to as Debilitating Symptom Complexes Attributed to Ticks (DSCATT). Here, we describe a research plan for investigating the aetiology, pathophysiology, and clinical outcomes of human tick-associated disease in Australia. Our approach focuses on the transmission of potential pathogens and the immunological responses of the patient after a tick bite. The protocol is strengthened by prospective data collection, the recruitment of two external matched control groups, and sophisticated integrative data analysis which, collectively, will allow the robust demonstration of associations between a tick bite and the development of clinical and pathological abnormalities. Various laboratory analyses are performed including metagenomics to investigate the potential transmission of bacteria, protozoa and/or viruses during tick bite. In addition, multi-omics technology is applied to investigate links between host immune responses and potential infectious and non-infectious disease causations. Psychometric profiling is also used to investigate whether psychological attributes influence symptom development. This research will fill important knowledge gaps about tick-borne diseases. Ultimately, we hope the results will promote improved diagnostic outcomes, and inform the safe management and treatment of patients bitten by ticks in Australia.

15.
Int J Parasitol ; 51(13-14): 1099-1119, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715087

RESUMO

The protozoan parasites Cryptosporidium and Giardia are significant causes of diarrhoea worldwide and are responsible for numerous waterborne and foodborne outbreaks of diseases. Over the last 50 years, the development of improved detection and typing tools has facilitated the expanding range of named species. Currently at least 44 Cryptosporidium spp. and >120 genotypes, and nine Giardia spp., are recognised. Many of these Cryptosporidium genotypes will likely be described as species in the future. The phylogenetic placement of Cryptosporidium at the genus level is still unclear and further research is required to better understand its evolutionary origins. Zoonotic transmission has long been known to play an important role in the epidemiology of cryptosporidiosis and giardiasis, and the development and application of next generation sequencing tools is providing evidence for this. Comparative whole genome sequencing is also providing key information on the genetic mechanisms for host specificity and human infectivity, and will enable One Health management of these zoonotic parasites in the future.


Assuntos
Criptosporidiose , Cryptosporidium , Giardíase , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium/genética , Fezes/parasitologia , Genótipo , Giardia/genética , Giardíase/epidemiologia , Giardíase/parasitologia , Humanos , Epidemiologia Molecular , Filogenia
16.
Artigo em Inglês | MEDLINE | ID: mdl-35284883

RESUMO

Next-generation sequencing (NGS) studies show that mosquito and tick microbiomes influence the transmission of pathogens, opening new avenues for vector-borne pathogen control. Recent microbiological studies of Australian ticks highlight fundamental knowledge gaps of tick-borne agents. This investigation explored the composition, diversity and prevalence of bacteria in Australian ticks (n = 655) from companion animals (dogs, cats and horses). Bacterial 16S NGS was used to identify most bacterial taxa and a Rickettsia-specific NGS assay was developed to identify Rickettsia species that were indistinguishable at the V1-2 regions of 16S. Sanger sequencing of near full-length 16S was used to confirm whether species detected by 16S NGS were novel. The haemotropic bacterial pathogens Anaplasma platys, Bartonella clarridgeiae, "Candidatus Mycoplasma haematoparvum" and Coxiella burnetii were identified in Rhipicephalus sanguineus (s.l.) from Queensland (QLD), Western Australia, the Northern Territory (NT), and South Australia, Ixodes holocyclus from QLD, Rh. sanguineus (s.l.) from the NT, and I. holocyclus from QLD, respectively. Analysis of the control data showed that cross-talk compromises the detection of rare species as filtering thresholds for less abundant sequences had to be applied to mitigate false positives. A comparison of the taxonomic assignments made with 16S sequence databases revealed inconsistencies. The Rickettsia-specific citrate synthase gene NGS assay enabled the identification of Rickettsia co-infections with potentially novel species and genotypes most similar (97.9-99.1%) to Rickettsia raoultii and Rickettsia gravesii. "Candidatus Rickettsia jingxinensis" was identified for the first time in Australia. Phylogenetic analysis of near full-length 16S sequences confirmed a novel Coxiellaceae genus and species, two novel Francisella species, and two novel Francisella genotypes. Cross-talk raises concerns for the MiSeq platform as a diagnostic tool for clinical samples. This study provides recommendations for adjustments to Illumina's 16S metagenomic sequencing protocol that help track and reduce cross-talk from cross-contamination during library preparation. The inconsistencies in taxonomic assignment emphasise the need for curated and quality-checked sequence databases.

17.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34913864

RESUMO

Advances in sequencing technologies have revealed the complex and diverse microbial communities present in ticks (Ixodida). As obligate blood-feeding arthropods, ticks are responsible for a number of infectious diseases that can affect humans, livestock, domestic animals and wildlife. While cases of human tick-borne diseases continue to increase in the northern hemisphere, there has been relatively little recognition of zoonotic tick-borne pathogens in Australia. Over the past 5 years, studies using high-throughput sequencing technologies have shown that Australian ticks harbour unique and diverse bacterial communities. In the present study, free-ranging wildlife (n=203), representing ten mammal species, were sampled from urban and peri-urban areas in New South Wales (NSW), Queensland (QLD) and Western Australia (WA). Bacterial metabarcoding targeting the 16S rRNA locus was used to characterize the microbiomes of three sample types collected from wildlife: blood, ticks and tissue samples. Further sequence information was obtained for selected taxa of interest. Six tick species were identified from wildlife: Amblyomma triguttatum, Ixodes antechini, Ixodes australiensis, Ixodes holocyclus, Ixodes tasmani and Ixodes trichosuri. Bacterial 16S rRNA metabarcoding was performed on 536 samples and 65 controls, generating over 100 million sequences. Alpha diversity was significantly different between the three sample types, with tissue samples displaying the highest alpha diversity (P<0.001). Proteobacteria was the most abundant taxon identified across all sample types (37.3 %). Beta diversity analysis and ordination revealed little overlap between the three sample types (P<0.001). Taxa of interest included Anaplasmataceae, Bartonella, Borrelia, Coxiellaceae, Francisella, Midichloria, Mycoplasma and Rickettsia. Anaplasmataceae bacteria were detected in 17.7% (95/536) of samples and included Anaplasma, Ehrlichia and Neoehrlichia species. In samples from NSW, 'Ca. Neoehrlichia australis', 'Ca. Neoehrlichia arcana', Neoehrlichia sp. and Ehrlichia sp. were identified. A putative novel Ehrlichia sp. was identified from WA and Anaplasma platys was identified from QLD. Nine rodent tissue samples were positive for a novel Borrelia sp. that formed a phylogenetically distinct clade separate from the Lyme Borrelia and relapsing fever groups. This novel clade included recently identified rodent-associated Borrelia genotypes, which were described from Spain and North America. Bartonella was identified in 12.9% (69/536) of samples. Over half of these positive samples were obtained from black rats (Rattus rattus), and the dominant bacterial species identified were Bartonella coopersplainsensis and Bartonella queenslandensis. The results from the present study show the value of using unbiased high-throughput sequencing applied to samples collected from wildlife. In addition to understanding the sylvatic cycle of known vector-associated pathogens, surveillance work is important to ensure preparedness for potential zoonotic spillover events.


Assuntos
Animais Selvagens/microbiologia , Bactérias/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Carrapatos/microbiologia , Animais , Austrália , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Cervos , Sequenciamento de Nucleotídeos em Larga Escala , Roedores , Reforma Urbana , País de Gales
18.
Artigo em Inglês | MEDLINE | ID: mdl-35284862

RESUMO

Vector-borne haemoprotozoans comprise a diverse group of eukaryote single-celled organisms transmitted by haematophagous (blood-feeding) invertebrates. They can cause debilitating diseases that impact wildlife, livestock, companion animals and humans. Recent research has shown that Australian wildlife host a diverse range of haemoprotozoan species; however, to date this work has primarily been confined to a few host species or isolated populations in rural habitats. There has been little investigation into the presence of these blood parasites in wildlife inhabiting urban and peri-urban areas. In this study, blood and tissue samples and ticks were collected from wildlife in New South Wales and Western Australia. Extracted DNA samples were screened with pan-specific molecular assays to determine the presence of haemoprotozoans using amplicon metabarcoding and Sanger sequencing approaches. In addition, light microscopy was performed on blood films. Eight haemoprotozoans were identified in the present study, which included species of Babesia, Hepatozoon, Theileria and Trypanosoma. Blood samples were collected from 134 animals; 70 black rats (Rattus), 18 common brush-tailed possums (Trichosurus vulpecula), two bush rats (Rattus fuscipes), 22 chuditch (Dasyurus geoffroii), 20 long-nosed bandicoots (Perameles nasuta), one quenda (Isoodon fusciventer) and one swamp rat (Rattus lutreolus). Molecular screening of DNA extracted from blood samples identified 52.2% (95% CI: 43.8-60.5%) of individuals were positive for at least one haemoprotozoan species, with 19.4% (95% CI: 13.4-26.7%) positive for more than one species. The present study provides the first sequences of Theileria cf. peramelis from black rats and long-nosed bandicoots. Babesia lohae was identified from brush-tailed possums. Two Hepatozoon genotypes were identified from black rats and bush rats. Black rats showed the highest haemoprotozoan diversity, with five species identified. No known human pathogens that have been described in the northern hemisphere were identified in the present study, and future work is required to understand the zoonotic potential of these microbes in Australia. This work represents the first large-scale body of research using molecular tools to investigate haemoprotozoans in animals at the urban-wildland interface. Further research is needed to investigate potential consequences of infection in wildlife, particularly effects of pathogen spillover from invasive black rats to native wildlife.

19.
Pathogens ; 9(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114071

RESUMO

The impact of emerging infectious diseases is increasingly recognised as a major threat to wildlife. Wild populations of the endangered Tasmanian devil, Sarcophilus harrisii, are experiencing devastating losses from a novel transmissible cancer, devil facial tumour disease (DFTD); however, despite the rapid decline of this species, there is currently no information on the presence of haemoprotozoan parasites. In the present study, 95 Tasmanian devil blood samples were collected from four populations in Tasmania, Australia, which underwent molecular screening to detect four major groups of haemoprotozoa: (i) trypanosomes, (ii) piroplasms, (iii) Hepatozoon, and (iv) haemosporidia. Sequence results revealed Trypanosoma infections in 32/95 individuals. Trypanosoma copemani was identified in 10 Tasmanian devils from three sites and a second Trypanosoma sp. was identified in 22 individuals that were grouped within the poorly described T. cyclops clade. A single blood sample was positive for Babesia sp., which most closely matched Babesia lohae. No other blood protozoan parasite DNA was detected. This study provides the first insight into haemoprotozoa from the Tasmanian devil and the first identification of Trypanosoma and Babesia in this carnivorous marsupial.

20.
Ticks Tick Borne Dis ; 11(3): 101407, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32051105

RESUMO

Ticks Acari:Ixodida transmit a greater variety of pathogens than any other blood-feeding group of arthropods. While numerous microbes have been identified inhabiting Australian Ixodidae, some of which are related to globally important tick-borne pathogens, little is known about the bacterial communities within ticks collected from Australian wildlife. In this study, 1,019 ticks were identified on 221 hosts spanning 27 wildlife species. Next-generation sequencing was used to amplify the V1-2 hypervariable region of the bacterial 16S rRNA gene from 238 ticks; Amblyomma triguttatum (n = 6), Bothriocroton auruginans (n = 11), Bothriocroton concolor (n = 20), Haemaphysalis bancrofti (n = 10), Haemaphysalis bremneri (n = 4), Haemaphysalis humerosa (n = 13), Haemaphysalis longicornis (n = 4), Ixodes antechini (n = 29), Ixodes australiensis (n = 26), Ixodes fecialis (n = 13), Ixodes holocyclus (n = 37), Ixodes myrmecobii (n = 1), Ixodes ornithorhynchi (n = 10), Ixodes tasmani (n = 51) and Ixodes trichosuri (n = 3). After bioinformatic analyses, over 14 million assigned bacterial sequences revealed the presence of recently described bacteria 'Candidatus Borrelia tachyglossi', 'Candidatus Neoehrlichia australis', 'Candidatus Neoehrlichia arcana' and 'Candidatus Ehrlichia ornithorhynchi'. Furthermore, three novel Anaplasmataceae species were identified in the present study including; a Neoehrlichia sp. in I. australiensis and I. fecialis collected from quenda (Isoodon fusciventer) (Western Australia), an Anaplasma sp. from one B. concolor from echidna (Tachyglossus aculeatus) (New South Wales), and an Ehrlichia sp. from a single I. fecialis parasitising a quenda (WA). This study highlights the diversity of bacterial genera harboured within wildlife ticks, which may prove to be of medical and/or veterinary importance in the future.


Assuntos
Bactérias/isolamento & purificação , Ixodidae/microbiologia , Microbiota , Animais , Animais Selvagens/parasitologia , Austrália , Bactérias/classificação , Ixodidae/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa