Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 5(5): e1000494, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19461891

RESUMO

Post-transcriptional regulatory mechanisms are widely used to influence cell fate decisions in germ cells, early embryos, and neurons. Many conserved cytoplasmic RNA regulatory proteins associate with each other and assemble on target mRNAs, forming ribonucleoprotein (RNP) complexes, to control the mRNAs translational output. How these RNA regulatory networks are orchestrated during development to regulate cell fate decisions remains elusive. We addressed this problem by focusing on Caenorhabditis elegans germline development, an exemplar of post-transcriptional control mechanisms. Here, we report the discovery of GLS-1, a new factor required for many aspects of germline development, including the oocyte cell fate in hermaphrodites and germline survival. We find that GLS-1 is a cytoplasmic protein that localizes in germ cells dynamically to germplasm (P) granules. Furthermore, its functions depend on its ability to form a protein complex with the RNA-binding Bicaudal-C ortholog GLD-3, a translational activator and P granule component important for similar germ cell fate decisions. Based on genetic epistasis experiments and in vitro competition experiments, we suggest that GLS-1 releases FBF/Pumilio from GLD-3 repression. This facilitates the sperm-to-oocyte switch, as liberated FBF represses the translation of mRNAs encoding spermatogenesis-promoting factors. Our proposed molecular mechanism is based on the GLS-1 protein acting as a molecular mimic of FBF/Pumilio. Furthermore, we suggest that a maternal GLS-1/GLD-3 complex in early embryos promotes the expression of mRNAs encoding germline survival factors. Our work identifies GLS-1 as a fundamental regulator of germline development. GLS-1 directs germ cell fate decisions by modulating the availability and activity of a single translational network component, GLD-3. Hence, the elucidation of the mechanisms underlying GLS-1 functions provides a new example of how conserved machinery can be developmentally manipulated to influence cell fate decisions and tissue development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular , Sobrevivência Celular , Mapeamento Cromossômico , Grânulos Citoplasmáticos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Helmintos , Células Germinativas/citologia , Masculino , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Oócitos/citologia , Oócitos/metabolismo , Oogênese/genética , Ligação Proteica , Processamento Pós-Transcricional do RNA , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Processos de Determinação Sexual , Espermatozoides/citologia , Espermatozoides/metabolismo
2.
PLoS One ; 4(7): e6241, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19597554

RESUMO

Efficient mRNA transport in eukaryotes requires highly orchestrated relationships between nuclear and cytoplasmic proteins. For oskar mRNA, the Drosophila posterior determinant, these spatio-temporal requirements remain opaque during its multi-step transport process. By in vivo covisualization of oskar mRNA with Staufen, its putative trafficking protein, we find oskar mRNA to be present in particles distinct from Staufen for part of its transport. oskar mRNA stably associated with Staufen near the posterior pole. We observe oskar mRNA to oligomerize as hundreds of copies forming large particles which are necessary for its long range transport and localization. We show the formation of these particles occurs in the nurse cell nucleus in an Hrp48-dependent manner. We present a more refined model of oskar mRNA transport in the Drosophila oocyte.


Assuntos
Proteínas de Drosophila/metabolismo , Oócitos/metabolismo , Animais , Drosophila , Proteínas de Drosophila/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Oócitos/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo
3.
Science ; 324(5935): 1729-32, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19460965

RESUMO

In sexually reproducing organisms, embryos specify germ cells, which ultimately generate sperm and eggs. In Caenorhabditis elegans, the first germ cell is established when RNA and protein-rich P granules localize to the posterior of the one-cell embryo. Localization of P granules and their physical nature remain poorly understood. Here we show that P granules exhibit liquid-like behaviors, including fusion, dripping, and wetting, which we used to estimate their viscosity and surface tension. As with other liquids, P granules rapidly dissolved and condensed. Localization occurred by a biased increase in P granule condensation at the posterior. This process reflects a classic phase transition, in which polarity proteins vary the condensation point across the cell. Such phase transitions may represent a fundamental physicochemical mechanism for structuring the cytoplasm.


Assuntos
Caenorhabditis elegans/embriologia , Grânulos Citoplasmáticos/fisiologia , Embrião não Mamífero/citologia , Células Germinativas/ultraestrutura , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Fenômenos Químicos , Citoplasma/metabolismo , Citoplasma/fisiologia , Citoplasma/ultraestrutura , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/ultraestrutura , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Transição de Fase , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA de Helmintos/química , Solubilidade , Tensão Superficial , Viscosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa