Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochem Biophys Res Commun ; 566: 135-140, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34119826

RESUMO

The global circulation of newly emerging variants of SARS-CoV-2 is a new threat to public health due to their increased transmissibility and immune evasion. Moreover, currently available vaccines and therapeutic antibodies were shown to be less effective against new variants, in particular, the South African (SA) variant, termed 501Y.V2 or B.1.351. To assess the efficacy of the CT-P59 monoclonal antibody against the SA variant, we sought to perform as in vitro binding and neutralization assays, and in vivo animal studies. CT-P59 neutralized B.1.1.7 variant to a similar extent as to wild type virus. CT-P59 showed reduced binding affinity against a RBD (receptor binding domain) triple mutant containing mutations defining B.1.351 (K417N/E484K/N501Y) also showed reduced potency against the SA variant in live virus and pseudovirus neutralization assay systems. However, in vivo ferret challenge studies demonstrated that a therapeutic dosage of CT-P59 was able to decrease B.1.351 viral load in the upper and lower respiratory tracts, comparable to that observed for the wild type virus. Overall, although CT-P59 showed reduced in vitro neutralizing activity against the SA variant, sufficient antiviral effect in B.1.351-infected animals was confirmed with a clinical dosage of CT-P59, suggesting that CT-P59 has therapeutic potential for COVID-19 patients infected with SA variant.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , COVID-19/terapia , COVID-19/virologia , Imunoglobulina G/uso terapêutico , SARS-CoV-2 , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Modelos Animais de Doenças , Feminino , Furões , Humanos , Imunoglobulina G/imunologia , Técnicas In Vitro , Testes de Neutralização , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , África do Sul , Carga Viral/imunologia
2.
Biochem Biophys Res Commun ; 578: 91-96, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547629

RESUMO

The SARS-CoV-2 variant is rapidly spreading across the world and causes to resurge infections. We previously reported that CT-P59 presented its in vivo potency against Beta variants, despite its reduced activity in cell experiments. Yet, it remains uncertain to exert the antiviral effect of CT-P59 on Gamma, Delta and its associated variants (L452R). To tackle this question, we carried out cell tests and animal studies. CT-P59 showed neutralization against Gamma, Delta, Epsilon, and Kappa variants in cells, with reduced susceptibility. The mouse challenge experiments with Gamma and Delta variants substantiated in vivo potency of CT-P59 showing symptom remission and virus abrogation in the respiratory tract. Collectively, cell and animal studies showed that CT-P59 is effective against Gamma and Delta variants infection, hinting that CT-P59 has therapeutic potential for patients infected with Gamma, Delta and its associated variants.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/farmacologia , Tratamento Farmacológico da COVID-19 , Modelos Animais de Doenças , Imunoglobulina G/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/farmacologia , Peso Corporal/efeitos dos fármacos , COVID-19/virologia , Feminino , Humanos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Análise de Sobrevida
3.
Emerg Microbes Infect ; 11(1): 2315-2325, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36006772

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant morbidity and mortality worldwide. Despite a successful vaccination programme, the emergence of mutated variants that can escape current levels of immunity mean infections continue. Herein, we report the development of CT-P63, a broad-spectrum neutralizing monoclonal antibody. In vitro studies demonstrated potent neutralizing activity against the most prevalent variants, including Delta and the BA.1 and BA.2 sub-lineages of Omicron. In a transgenic mouse model, prophylactic CT-P63 significantly reduced wild-type viral titres in the respiratory tract and CT-P63 treatment proved efficacious against infection with Beta, Delta, and Omicron variants of SARS-CoV-2 with no detectable infectious virus in the lungs of treated animals. A randomized, double-blind, parallel-group, placebo-controlled, Phase I, single ascending dose study in healthy volunteers (NCT05017168) confirmed the safety, tolerability, and pharmacokinetics of CT-P63. Twenty-four participants were randomized and received the planned dose of CT-P63 or placebo. The safety and tolerability of CT-P63 were evaluated as primary objectives. Eight participants (33.3%) experienced a treatment-emergent adverse event (TEAE), including one grade ≥3 (blood creatine phosphokinase increased). There were no deaths, treatment-emergent serious adverse events, TEAEs of special interest, or TEAEs leading to study drug discontinuation in the CT-P63 groups. Serum CT-P63 concentrations rapidly peaked before declining in a biphasic manner and systemic exposure was dose proportional. Overall, CT-P63 was clinically safe and showed broad-spectrum neutralizing activity against SARS-CoV-2 variants in vitro and in vivo.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Creatina Quinase , Humanos , Camundongos , Glicoproteína da Espícula de Coronavírus
4.
Nat Commun ; 12(1): 288, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436577

RESUMO

Vaccines and therapeutics are urgently needed for the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we screen human monoclonal antibodies (mAb) targeting the receptor binding domain (RBD) of the viral spike protein via antibody library constructed from peripheral blood mononuclear cells of a convalescent patient. The CT-P59 mAb potently neutralizes SARS-CoV-2 isolates including the D614G variant without antibody-dependent enhancement effect. Complex crystal structure of CT-P59 Fab/RBD shows that CT-P59 blocks interaction regions of RBD for angiotensin converting enzyme 2 (ACE2) receptor with an orientation that is notably different from previously reported RBD-targeting mAbs. Furthermore, therapeutic effects of CT-P59 are evaluated in three animal models (ferret, hamster, and rhesus monkey), demonstrating a substantial reduction in viral titer along with alleviation of clinical symptoms. Therefore, CT-P59 may be a promising therapeutic candidate for COVID-19.


Assuntos
Anticorpos Neutralizantes/farmacologia , Tratamento Farmacológico da COVID-19 , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/química , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Furões , Humanos , Leucócitos Mononucleares , Macaca mulatta , Masculino , Mesocricetus , Modelos Moleculares , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/química , Células Vero
5.
Antiviral Res ; 175: 104709, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31940474

RESUMO

Currently, therapies to treat chronic hepatitis B (CHB) infection are based on the use of interferon-α or nucleos(t)ide analogs (NAs) to prevent viral DNA synthesis by inhibiting the reverse transcriptase activity of the hepatitis B virus (HBV) polymerase (Pol). However, these therapies are not curative; thus, the development of novel anti-HBV agents is needed. In accordance with this unmet medical need, we devised a new target- and cell-based, high-throughput screening assay to identify novel small molecules that block the initial interaction of the HBV Pol with its replication template the viral pregenomic RNA (pgRNA). We screened approximately 110,000 small molecules for the ability to prevent HBV Pol recognition of the pgRNA 5' epsilon (ε) stem-loop structure, identifying (Z)-2-(allylamino)-4-amino-N'-cyanothiazole-5-carboximidamide (AACC). Viral nucleocapsid-captured quantitative RT-PCR and Western blot results revealed that AACC significantly decreased encapsidated pgRNA levels and blocked capsid assembly without affecting core protein expression in stable HBV-replicating cells. As a result, both intra- and extracellular accumulation of viral DNA was strongly reduced. AACC treatment of HepG2-sodium taurocholate transporting polypeptide (NTCP) cells and primary human hepatocytes infected with cell culture- or patient-derived HBV isolates showed both time- and dose-dependent inhibition of infectious viral progeny and rcDNA production. Furthermore, AACC showed cross-genotypic activity against genotypes B, C, and D. Of note, AACC inhibited the viral replication of lamivudine and a capsid inhibitor-resistant HBV, and showed synergistic effects with NAs and a capsid inhibitor. In conclusion, we identified a novel class of compounds specifically targeting the ε-Pol interaction and thereby preventing the encapsidation of pgRNAs into viral capsids. This promising new HBV inhibitor class potently inhibits HBV amplification with distinct characteristics from existing NAs and other drugs currently under development, promising to add value to existing therapies for CHB.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , RNA Viral/antagonistas & inibidores , Montagem de Vírus/efeitos dos fármacos , Antivirais/química , Antivirais/isolamento & purificação , Células Cultivadas , Células HEK293 , Células Hep G2 , Vírus da Hepatite B/fisiologia , Hepatócitos/virologia , Ensaios de Triagem em Larga Escala , Humanos , RNA Viral/genética , Bibliotecas de Moléculas Pequenas , Replicação Viral/efeitos dos fármacos
6.
PLoS One ; 15(7): e0236172, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32726321

RESUMO

There are several broadly neutralizing monoclonal antibodies that neutralize influenza viruses with different mechanisms from traditional polyclonal antibodies induced by vaccination. CT149, which is one of the broadly neutralizing antibodies, was also previously reported to neutralize group 2 and some of group 1 influenza viruses (13 out of 13 tested group 2 viruses and 5 out of 11 group 1 viruses). In this study, we developed another antibody with the aim of compensating partial coverage of CT149 against group 1 influenza viruses. CT120 was screened among different antibody candidates and mixed with CT149. Importantly, although the binding sites of CT120 and CT149 are close to each other, the two antibodies do not interfere. The mixture of CT120 and CT149, which we named as CT-P27, showed broad efficacy by neutralizing 37 viruses from 11 different subtypes, of both group 1 and 2 influenza A viruses. Moreover, CT-P27 showed in vivo therapeutic efficacy, long prophylactic potency, and synergistic effect with oseltamivir in influenza virus-challenged mouse models. Our findings provide a novel therapeutic opportunity for more efficient treatment of influenza.


Assuntos
Anticorpos Monoclonais/farmacocinética , Anticorpos Neutralizantes/farmacologia , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Antígenos Virais/imunologia , Hemaglutinação/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos , Testes de Neutralização , Vacinação
7.
Biotechniques ; 59(5): 287-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26554506

RESUMO

After encapsidation, where pregenomic RNA (pgRNA) is packaged into viral nucleocapsids, hepatitis B virus (HBV) uses the pgRNA as a template to replicate its DNA genome by reverse transcription. To date, there are only two encapsidation detection methods for evaluating the amount of pgRNA packaged into nucleocapsids: (i) the RNase protection assay and (ii) the native agarose gel electrophoresis assay. However, these methods are complex and laborious because they require multiple pgRNA purification steps followed by detection via an isotope-labeled probe. Moreover, both assays are unsuitable for evaluating a large number of antiviral agents in a dose-dependent manner. To overcome these limitations, we devised a novel HBV encapsidation assay in a 96-well plate format using nucleocapsid capture plates coated with an anti-HBV core (HBc) antibody, usually employed in enzyme-linked immunosorbent assays, to immobilize viral nucleocapsids. Viral pgRNA is then detected by quantitative RT-PCR (RT-qPCR). This strategy allows fast, convenient, and quantitative analysis of multiple viral RNA samples to evaluate encapsidation inhibitors. Furthermore, our protocol is potentially suitable for high-throughput screening (HTS) of compounds targeting HBV pgRNA encapsidation.


Assuntos
Vírus da Hepatite B/isolamento & purificação , Nucleocapsídeo/isolamento & purificação , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Células Hep G2 , Vírus da Hepatite B/genética , Humanos , Nucleocapsídeo/genética , Patologia Molecular/métodos , RNA Viral/genética , Virologia/métodos
8.
Virology ; 406(1): 56-64, 2010 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-20667576

RESUMO

The pregenomic RNA (pgRNA) of hepatitis B virus (HBV) serves as an mRNA as well as an RNA template for viral reverse transcription. We previously reported that HBV Pol (polymerase) suppresses translation of the pgRNA through a mechanism involving the 5 epsilon sequence [Virology 373:112-123(2008)]. Here, we found that the recognition of the 5 epsilon stem-loop structure by HBV Pol is essential for the translation suppression. Intriguingly, the translation suppression was observed only when the 5 epsilon sequence was positioned within approximately 60 nucleotides from the 5' end, which is striking reminiscent of the pgRNA encapsidation. This finding implicates that the translation suppression is mechanistically linked to encapsidation of the pgRNA. However, unexpectedly, the HBV Pol-eIF4E interaction, which we reported recently [J. Virol. 84:52-58(2010)], is not required for the translation suppression. Instead, the data suggested that the cap proximity of 5 epsilon sequence is necessary and sufficient for the translation suppression.


Assuntos
Produtos do Gene pol/metabolismo , Vírus da Hepatite B/enzimologia , Vírus da Hepatite B/genética , Capuzes de RNA/química , Capuzes de RNA/genética , RNA Viral/química , RNA Viral/genética , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Modelos Biológicos , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Capuzes de RNA/metabolismo , RNA Viral/metabolismo
9.
Methods Mol Biol ; 634: 137-46, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20676981

RESUMO

Mutagenesis by the overlap extension PCR has become a standard method of creating mutations including substitutions, insertions, and deletions. Nonetheless, the established overlap PCR mutagenesis is limited in many respects. In particular, it has been difficult to make an insertion larger than 30 nt, since all sequence alterations must be embedded within the primer. Here, we describe a rapid and efficient method for creating insertions or deletions of any length at any position in a DNA molecule. This method is generally applicable, and therefore represents a significant improvement to the now widely used overlap extension PCR method.


Assuntos
Mutagênese , Reação em Cadeia da Polimerase/métodos , Primers do DNA
10.
J Gen Virol ; 90(Pt 9): 2272-81, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19439550

RESUMO

During chronic hepatitis B virus (HBV) infection, double substitution mutations in the basal core promoter (BCP) region frequently emerge that include A1762T/G1764A and the neighbouring C1766T/T1768A mutations, here termed BCP1 and BCP2, respectively. Due to a compact viral genome organization, BCP1 and BCP2 mutations result in amino acids changes in the overlapping X gene: K130M/V131I and F132Y, respectively. It has been shown that both BCP mutations lead to a modest increase in viral genome replication. However, the question of whether the alteration that occurs in the overlapping X gene might contribute to the increased viral genome replication has not been properly addressed. This study genetically separated the core promoter from the overlapping X gene using 1.3mer overlength HBV constructs and examined the impact of the X gene mutations on viral genome replication in HepG2 cells. Each BCP mutation resulted in modestly enhanced viral genome replication that occurred via augmented viral transcription. Therefore, it was concluded that these BCP mutations do not affect expression of the overlapping X gene or impair its stimulatory effect on viral genome replication.


Assuntos
Vírus da Hepatite B/genética , Mutação , Regiões Promotoras Genéticas , Transativadores/genética , Linhagem Celular , Regulação Viral da Expressão Gênica , Hepatite B/virologia , Vírus da Hepatite B/fisiologia , Humanos , Fenótipo , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias , Replicação Viral
11.
J Gen Virol ; 90(Pt 4): 978-986, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19264639

RESUMO

HBx, a small regulatory protein of hepatitis B virus, plays an important role in stimulating viral genome replication. HBx was shown to be associated with diverse subcellular locations, such as the nucleus, cytoplasm and mitochondria. Some studies have linked the stimulation of genome replication by HBx to its cytoplasmic function, while other reports have attributed this function to its nuclear component. To clarify this discrepancy, we measured viral genome replication by complementing an HBx-null replicon in two different ways: by (i) co-transfecting with an increasing amount of HBx expression plasmid and (ii) co-transfecting with re-targeted variants of HBx that are confined to either the nucleus or the cytoplasm due to either the nuclear localization signal (NLS) or the nuclear export signal (NES) tags, respectively. Intriguingly, immunostaining analysis indicated that the subcellular localization of HBx is primarily influenced by its abundance; HBx is confined to the nucleus at low levels but is usually detected in the cytoplasm at high levels. Importantly, HBx, whether re-targeted by either the NLS or NES tag, stimulates viral genome replication to a level comparable to that of the wild-type. Furthermore, similar to the wild-type, the stimulation of viral genome replication by the re-targeted HBx occurred at the transcription level. Thus, we concluded that the stimulation of viral genome replication by HBx is linked to both nuclear and cytoplasmic HBx, although the underlying mechanism of stimulation most likely differs.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação Viral da Expressão Gênica , Vírus da Hepatite B/fisiologia , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral , Linhagem Celular , Replicação do DNA , Genoma Viral , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Humanos , RNA Viral/genética , RNA Viral/isolamento & purificação , RNA Viral/metabolismo , Transativadores/genética , Transfecção , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética
12.
Virology ; 373(1): 112-23, 2008 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-18155120

RESUMO

The pregenomic RNA (pgRNA) of hepadnaviruses serves a dual role: as mRNA for the core (C) and polymerase (P) synthesis and as an RNA template for viral genome replication. A question arises as to how these two roles are regulated. We hypothesized that the P protein could suppress translation of the pgRNA via its interaction with 5' stem-loop structure (epsilon or encapsidation signal). Consistent with the hypothesis, we observed up-regulation of the C protein level in the absence of the P protein expression in a physiological context. Importantly, translational suppression depended on the 5' epsilon sequence. Furthermore, the impact of the P protein on ongoing translation of the C ORF was directly demonstrated by polysome distribution analysis. We conclude that the P protein suppresses translation of the pgRNA via a mechanism involving its interaction with the 5' epsilon sequence, a finding that implicates the coordinated switch from translation to genome replication.


Assuntos
Regiões 5' não Traduzidas/metabolismo , Vírus da Hepatite B/enzimologia , Biossíntese de Proteínas/efeitos dos fármacos , DNA Polimerase Dirigida por RNA/metabolismo , RNA/efeitos dos fármacos , Regiões 5' não Traduzidas/química , Linhagem Celular , Regulação Viral da Expressão Gênica , Vírus da Hepatite B/genética , Humanos , RNA/metabolismo , RNA Viral/metabolismo , DNA Polimerase Dirigida por RNA/farmacologia , Transfecção , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Replicação Viral
13.
Virology ; 371(2): 362-73, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17988705

RESUMO

Although an overall genetic strategy for hepadnaviral reverse transcription has been established, the mechanism that underlies the minus-strand transfer is still poorly defined. We and others independently identified a novel cis-acting element, termed beta or varphi, respectively, that is critical for the minus-strand DNA synthesis of hepatitis B virus. A 5'-3', long-range interaction of the RNA template was proposed that involves the 5' epsilon sequence (encapsidation signal) and the 3' beta/varphi sequence. We subjected the hypothesized base pairing to genetic analysis. The data indicated that mutations abrogating the hypothesized base pairing markedly impaired minus-strand DNA synthesis, while compensatory mutations that restored the base pairing rescued the minus-strand DNA synthesis. These results demonstrated the critical role of the 5'-3', long-range interaction in minus-strand DNA synthesis. We speculate that such a long-range interaction may precisely juxtapose a donor to an acceptor during minus-strand transfer.


Assuntos
Pareamento de Bases , DNA Viral/biossíntese , Vírus da Hepatite B/genética , RNA Viral/genética , Transcrição Reversa , Moldes Genéticos , Sequência de Bases , Linhagem Celular Tumoral , DNA Circular/biossíntese , Vírus da Hepatite B/metabolismo , Humanos , Dados de Sequência Molecular , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa