Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rep Pract Oncol Radiother ; 21(3): 266-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27601960

RESUMO

AIM: To evaluate the deviations in prostatectomy patients treated with IMRT in order to calculate appropriate margins to create the PTV. BACKGROUND: Defining inappropriate margins can lead to underdosing in target volumes and also overdosing in healthy tissues, increasing morbidity. MATERIAL AND METHODS: 223 CBCT images used for alignment with the CT planning scan based on bony anatomy were analyzed in 12 patients treated with IMRT following prostatectomy. Shifts of CBCT images were recorded in three directions to calculate the required margin to create PTV. RESULTS AND DISCUSSION: The mean and standard deviation (SD) values in millimetres were -0.05 ± 1.35 in the LR direction, -0.03 ± 0.65 in the SI direction and -0.02 ± 2.05 the AP direction. The systematic error measured in the LR, SI and AP direction were 1.35 mm, 0.65 mm, and 2.05 mm with a random error of 2.07 mm; 1.45 mm and 3.16 mm, resulting in a PTV margin of 4.82 mm; 2.64 mm, and 7.33 mm, respectively. CONCLUSION: With IGRT we suggest a margin of 5 mm, 3 mm and 8 mm in the LR, SI and AP direction, respectively, to PTV1 and PTV2. Therefore, this study supports an anisotropic margin expansion to the PTV being the largest expansion in the AP direction and lower in SI.

3.
Front Oncol ; 12: 879167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992845

RESUMO

3DCRT and IMRT out-of-field doses in pediatric patients were compared using Monte Carlo simulations with treatment planning system calculations and measurements. Purpose: Out-of-field doses are given to healthy tissues, which may allow the development of second tumors. The use of IMRT in pediatric patients has been discussed, as it leads to a "bath" of low doses to large volumes of out-of-field organs and tissues. This study aims to compare out-of-field doses in pediatric patients comparing IMRT and 3DCRT techniques using measurements, Monte Carlo (MC) simulations, and treatment planning system (TPS) calculations. Materials and methods: A total dose of 54 Gy was prescribed to a PTV in the brain of a pediatric anthropomorphic phantom, for both techniques. To assess the out-of-field organ doses for both techniques, two treatment plans were performed with the 3DCRT and IMRT techniques in TPS. Measurements were carried out in a LINAC using a pediatric anthropomorphic phantom and thermoluminescent dosimeters to recreate the treatment plans, previously performed in the TPS. A computational model of a LINAC, the associated multileaf collimators, and a voxelized pediatric phantom implemented in the Monte Carlo N-Particle 6.1 computer program were also used to perform MC simulations of the out-of-field organ doses, for both techniques. Results: The results obtained by measurements and MC simulations indicate a significant increase in dose using the IMRT technique when compared to the 3DCRT technique. More specifically, measurements show higher doses with IMRT, namely, in right eye (13,041 vs. 593 mGy), left eye (6,525 vs. 475 mGy), thyroid (79 vs. 70 mGy), right lung (37 vs. 28 mGy), left lung (27 vs. 20 mGy), and heart (31 vs. 25 mGy). The obtained results indicate that out-of-field doses can be seriously underestimated by TPS. Discussion: This study presents, for the first time, out-of-field dose measurements in a realistic scenario and calculations for IMRT, centered on a voxelized pediatric phantom and an MC model of a medical LINAC, including MLC with log file-based simulations. The results pinpoint significant discrepancies in out-of-field doses for the two techniques and are a cause of concern because TPS calculations cannot accurately predict such doses. The obtained doses may presumably increase the risk of development of second tumors.

4.
Radiol Phys Technol ; 10(3): 274-278, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28324390

RESUMO

This study aimed to assess the administered dose based on portal imaging in craniospinal pediatric irradiation by evaluating cases in which portal images did or did not account for the total administered dose. We also intended to calculate the mean increase in total administered dose. Data were collected from General University Hospital Gregorio Marañón; we evaluated the total dose administered, total dose planned, number of portal images per treatment and corresponding monitor units of two different groups: one in which the dose from portal images is deducted from the total administered dose (D), and another in which it was not (N). We used descriptive statistics to analyze the collected data, including the mean and respective standard deviation. We used the Shapiro-Wilk and Spearman rank correlation coefficient tests and estimated the linear regression coefficients. Patients in group D received a mean dose of 29.00 ± 10.28 cGy based on the verification portal images, a quantity that was deducted from the planned dose to match the total administered dose. Patients in group N received a mean dose of 41.50 ± 30.53 cGy, which was not deducted from the planned dose, evidencing a mean increase of 41.50 ± 30.55 cGy over the total administered dose. The acquisition of the set-up verification portal images, without their inclusion in the total administered dose, reflects an average increase in total dose for craniospinal irradiation of pediatric patients. Subtraction of the monitor units used to acquire the verification images is recommended.


Assuntos
Radiação Cranioespinal , Doses de Radiação , Radioterapia Guiada por Imagem , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/radioterapia , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Meduloblastoma/diagnóstico por imagem , Meduloblastoma/radioterapia , Dosagem Radioterapêutica , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa