Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(6): 639-650, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29571767

RESUMO

We have previously shown that phospholipase D (PLD) pathways have a role in neuronal degeneration; in particular, we found that PLD activation is associated with synaptic injury induced by oxidative stress. In the present study, we investigated the effect of α-synuclein (α-syn) overexpression on PLD signaling. Wild Type (WT) α-syn was found to trigger the inhibition of PLD1 expression as well as a decrease in ERK1/2 phosphorylation and expression levels. Moreover, ERK1/2 subcellular localization was shown to be modulated by WT α-syn in a PLD1-dependent manner. Indeed, PLD1 inhibition was found to alter the neurofilament network and F-actin distribution regardless of the presence of WT α-syn. In line with this, neuroblastoma cells expressing WT α-syn exhibited a degenerative-like phenotype characterized by a marked reduction in neurofilament light subunit (NFL) expression and the rearrangement of the F-actin organization, compared with either the untransfected or the empty vector-transfected cells. The gain of function of PLD1 through the overexpression of its active form had the effect of restoring NFL expression in WT α-syn neurons. Taken together, our findings reveal an unforeseen role for α-syn in PLD regulation: PLD1 downregulation may constitute an early mechanism in the initial stages of WT α-syn-triggered neurodegeneration.


Assuntos
Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Doença de Parkinson/metabolismo , Fosfolipase D/biossíntese , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Mutação com Ganho de Função , Humanos , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fosfolipase D/genética , alfa-Sinucleína/genética
2.
Arch Biochem Biophys ; 655: 43-54, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30098984

RESUMO

Pathological α-synuclein (α-syn) overexpression and iron (Fe)-induced oxidative stress (OS) are involved in the death of dopaminergic neurons in Parkinson's disease (PD). We have previously characterized the role of triacylglycerol (TAG) formation in the neuronal response to Fe-induced OS. In this work we characterize the role of the α-syn variant A53T during Fe-induced injury and investigate whether lipid metabolism has implications for neuronal fate. To this end, we used the N27 dopaminergic neuronal cell line either untransfected (UT) or stably transfected with pcDNA3 vector (as a transfection control) or pcDNA-A53T-α-syn (A53T α-syn). The overexpression of A53T α-syn triggered an increase in TAG content mainly due to the activation of Acyl-CoA synthetase. Since fatty acid (FA) ß-oxidation and phospholipid content did not change in A53T α-syn cells, the unique consequence of the increase in FA-CoA derivatives was their acylation in TAG moieties. Control cells exposed to Fe-induced injury displayed increased OS markers and TAG content. Intriguingly, Fe exposure in A53T α-syn cells promoted a decrease in OS markers accompanied by α-syn aggregation and elevated TAG content. We report here new evidence of a differential role played by A53T α-syn in neuronal lipid metabolism as related to the neuronal response to OS.


Assuntos
Ferro/toxicidade , Neurônios/metabolismo , alfa-Sinucleína/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/genética , Gotículas Lipídicas/metabolismo , Mutação , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transfecção/métodos , Triglicerídeos/metabolismo , alfa-Sinucleína/genética
3.
PLoS One ; 10(6): e0130726, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26076361

RESUMO

Metal-imbalance has been reported as a contributor factor for the degeneration of dopaminergic neurons in Parkinson Disease (PD). Specifically, iron (Fe)-overload and copper (Cu) mis-compartmentalization have been reported to be involved in the injury of dopaminergic neurons in this pathology. The aim of this work was to characterize the mechanisms of membrane repair by studying lipid acylation and deacylation reactions and their role in oxidative injury in N27 dopaminergic neurons exposed to Fe-overload and Cu-supplementation. N27 dopaminergic neurons incubated with Fe (1 mM) for 24 hs displayed increased levels of reactive oxygen species (ROS), lipid peroxidation and elevated plasma membrane permeability. Cu-supplemented neurons (10, 50 µM) showed no evidence of oxidative stress markers. A different lipid acylation profile was observed in N27 neurons pre-labeled with [3H] arachidonic acid (AA) or [3H] oleic acid (OA). In Fe-exposed neurons, AA uptake was increased in triacylglycerols (TAG) whereas its incorporation into the phospholipid (PL) fraction was diminished. TAG content was 40% higher in Fe-exposed neurons than in controls. This increase was accompanied by the appearance of Nile red positive lipid bodies. Contrariwise, OA incorporation increased in the PL fractions and showed no changes in TAG. Lipid acylation profile in Cu-supplemented neurons showed AA accumulation into phosphatidylserine and no changes in TAG. The inhibition of deacylation/acylation reactions prompted an increase in oxidative stress markers and mitochondrial dysfunction in Fe-overloaded neurons. These findings provide evidence about the participation of lipid acylation mechanisms against Fe-induced oxidative injury and postulate that dopaminergic neurons cleverly preserve AA in TAG in response to oxidative stress.


Assuntos
Acilação/fisiologia , Neurônios Dopaminérgicos/fisiologia , Sobrecarga de Ferro/fisiopatologia , Metabolismo dos Lipídeos/fisiologia , Estresse Oxidativo/fisiologia , Animais , Ácido Araquidônico/química , Linhagem Celular , Cobre/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos/fisiologia , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/fisiologia , Ácido Oleico/química , Oxirredução , Doença de Parkinson/patologia , Fosfolipídeos/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa