Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 11(4): 655-8, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25513994

RESUMO

In this work we report experimental and theoretical results for the motion of single colloidal particles embedded in complex fluids with different interparticle interactions. The motion of particles is found to follow a similar behavior for the different systems. In particular, the transition from the short-time diffusive motion to the subdiffusive intermediate-time motion is found to occur when the square root of its mean squared displacement is in the order of 1 tenth of the neighbors' interparticle distance, thus following a quantitative criterion similar to Lindemann's criterion for melting.

2.
Eur Phys J E Soft Matter ; 38(1): 3, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25618614

RESUMO

We studied the rotational and translational diffusion of optically anisotropic liquid crystal particles embedded in semidiluted polymer solutions of Poly-Ethylene-Oxide (PEO) at different concentrations and different molecular weights. The polymer radius of gyration was chosen to be similar to the size of the probe particles and the polymer concentrations used are just above the crossover concentration. Thus, the system consists of solid probe particles moving in a sea of overlapping particles of similar size. We found that the behavior of both particle dynamics, rotational and translational, is similar in the range of concentrations considered here. In both cases, two linear diffusive regimes are observed, separated by a subdiffusive time interval. The spatial scale at which this intermediate regime appears shows a dependence on both the polymer concentration and molecular weight, and has a value similar to the thickness of the polymer-depleted layer usually found in this kind of systems. Additionally, we observe that the colloidal dynamic scales with the overlapping degree of the polymer particles.

3.
Sci Rep ; 9(1): 3531, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837599

RESUMO

Applying an unsteady magnetic field to a 2D nonvibrating magnetic granular system induces a random motion in the steel beads with characteristics analogous to that of molecules in a fluid. We investigate the structural characteristics of the solid-like structures generated by different quenching conditions. The applied field is generated by the superposition of a constant field and a collinear sinusoidal field. The system reaches a quasi steady state in which the effective temperature is proportional to the amplitude of the applied field. By reducing the effective temperature at different rates, different cooling rates are produced. A slight inclination of the surface allows us to investigate the effects of small particle concentration gradients. The formation of a wide and rich variety of condensed solid structures, from gel-like and glass-like structures up to crystalline structures, is observed and depends on the cooling rate. We focus our attention on the crystallization process and found this process to be a collective phenomenon. We discuss our results in terms of the measured time evolution of the mean squared displacement, the effective diffusion coefficient, and the radial distribution function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa