Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 85(14): 8944-8951, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32545956

RESUMO

Liquid crystal macrocycles (LCMs) combine the unique properties of liquid crystals with those associated with macrocyclic compounds-shape persistence and the capability of hosting small molecules. Herein, we investigate the grafting of coumarin-containing promesogenic moieties to pillar[5]arene as a strategy to obtain multifunctional LCMs. Pillar[5]arenes containing 10 and 30 coumarin units are glassy materials with nematic mesomorphism. Moreover, the coumarin moieties afford the pillar[5]arene derivatives with enhanced film-forming and photoresponsive properties. Photodimerization of the coumarin moieties results in cross-linked polymer networks, which can be used as alignment layers. Therefore, liquid-crystal coumarin-containing pillar[5]arenes represent a significant addition to the family of LCMs and may become useful for the development of engineered, hierarchical structures and materials.

2.
Sensors (Basel) ; 19(13)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252582

RESUMO

Optical planar waveguide sensors, able to detect and process information from the environment in a fast, cost-effective, and remote fashion, are of great interest currently in different application areas including security, metrology, automotive, aerospace, consumer electronics, energy, environment, or health. Integration of networks of these systems together with other optical elements, such as light sources, readout, or detection systems, in a planar waveguide geometry is greatly demanded towards more compact, portable, and versatile sensing platforms. Herein, we report an optical temperature sensor with a planar waveguide architecture integrating inkjet-printed luminescent light coupling-in and readout elements with matched emission and excitation. The first luminescent element, when illuminated with light in its absorption band, emits light that is partially coupled into the propagation modes of the planar waveguide. Remote excitation of this element can be performed without the need for special alignment of the light source. A thermoresponsive liquid crystal-based film regulates the amount of light coupled out from the planar waveguide at the sensing location. The second luminescent element partly absorbs the waveguided light that reaches its location and emits at longer wavelengths, serving as a temperature readout element through luminescence intensity measurements. Overall, the ability of inkjet technology to digitally print luminescent elements demonstrates great potential for the integration and miniaturization of light coupling-in and readout elements in optical planar waveguide sensing platforms.

3.
Macromol Rapid Commun ; 39(5)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29210486

RESUMO

Soft matter elements undergoing programed, reversible shape change can contribute to fundamental advance in areas such as optics, medicine, microfluidics, and robotics. Crosslinked liquid crystalline polymers have demonstrated huge potential to implement soft responsive elements; however, the complexity and size of the actuators are limited by the current dominant thin-film geometry processing toolbox. Using 3D printing, stimuli-responsive liquid crystalline elastomeric structures are created here. The printing process prescribes a reversible shape-morphing behavior, offering a new paradigm for active polymer system preparation. The additive character of this technology also leads to unprecedented geometries, complex functions, and sizes beyond those of typical thin-films. The fundamental concepts and devices presented therefore overcome the current limitations of actuation energy available from thin-films, thereby narrowing the gap between materials and practical applications.


Assuntos
Elastômeros/química , Polímeros/química , Impressão Tridimensional/instrumentação , Robótica/instrumentação , Estrutura Molecular , Robótica/métodos , Temperatura
4.
Small ; 13(33)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28736935

RESUMO

While self-assembled molecular building blocks could lead to many next-generation functional organic nanomaterials, control over the thin-film morphologies to yield monolithic sub-5 nm patterns with 3D orientational control at macroscopic length scales remains a grand challenge. A series of photoresponsive hybrid oligo(dimethylsiloxane) liquid crystals that form periodic cylindrical nanostructures with periodicities between 3.8 and 5.1 nm is studied. The liquid crystals can be aligned in-plane by exposure to actinic linearly polarized light and out-of-plane by exposure to actinic unpolarized light. The photoalignment is most efficient when performed just under the clearing point of the liquid crystal, at which the cylindrical nanostructures are reoriented within minutes. These results allow the generation of highly ordered sub-5 nm patterns in thin films at macroscopic length scales, with control over the orientation in a noncontact fashion.

5.
ACS Appl Mater Interfaces ; 16(2): 2704-2715, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38150329

RESUMO

Liquid crystal elastomer (LCE)-based soft actuators are being studied for their significant shape-changing abilities when they are exposed to heat or light. Nevertheless, their relatively slow response compared with soft magnetic materials limits their application possibilities. Integration of magnetic responsiveness with LCEs has been previously attempted; however, the LCE response is typically jeopardized in high volumes of magnetic microparticles (MMPs). Here, a multistimuli, magnetically active LCE (MLCE), capable of producing programmable and multimodal actuation, is presented. The MLCE, composed of MMPs within an LCE matrix, is generated through extrusion-based 4D printing that enables digital control of mesogen orientation even at a 1:1 (LCE:MMPs) weight ratio, a challenging task to accomplish with other methods. The printed actuators can significantly deform when thermally actuated as well as exhibit fast response to magnetic fields. When combining thermal and magnetic stimuli, modes of actuation inaccessible with only one input are achieved. For instance, the actuator is reconfigured into various states by using the heat-mediated LCE response, followed by subsequent magnetic addressing. The multistimuli capabilities of the MLCE composite expand its applicability where common LCE actuators face limitations in speed and precision. To illustrate, a beam-steering device developed by using these materials is presented.

6.
Adv Sci (Weinh) ; 11(25): e2308561, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38590131

RESUMO

Underwater organisms exhibit sophisticated propulsion mechanisms, enabling them to navigate fluid environments with exceptional dexterity. Recently, substantial efforts have focused on integrating these movements into soft robots using smart shape-changing materials, particularly by using light for their propulsion and control. Nonetheless, challenges persist, including slow response times and the need of powerful light beams to actuate the robot. This last can result in unintended sample heating and potentially necessitate tracking specific actuation spots on the swimmer. To tackle these challenges, new azobenzene-containing photopolymerizable inks are introduced, which can be processed by extrusion printing into liquid crystalline elastomer (LCE) elements of precise shape and morphology. These LCEs exhibit rapid and significant photomechanical response underwater, driven by moderate-intensity ultraviolet (UV) and green light, being the actuation mechanism predominantly photochemical. Inspired by nature, a biomimetic four-lapped ephyra-like LCE swimmer is printed. The periodically illumination of the entire swimmer with moderate-intensity UV and green light, induces synchronous lappet bending toward the light source and swimmer propulsion away from the light. The platform eliminates the need of localized laser beams and tracking systems to monitor the swimmer's motion through the fluid, making it a versatile tool for creating light-fueled robotic LCE free-swimmers.

7.
J Mater Chem B ; 12(12): 3144-3160, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456751

RESUMO

Biomimetic 3D models emerged some decades ago to address 2D cell culture limitations in the field of replicating biological phenomena, structures or functions found in nature. The fabrication of hydrogels for cancer disease research enables the study of cell processes including growth, proliferation and migration and their 3D design is based on the encapsulation of tumoral cells within a tunable matrix. In this work, a platform of gelatin methacrylamide (GelMA)-based photocrosslinked scaffolds with embedded colorectal (HCT-116) or pancreatic (MIA PaCa-2) cancer cells is presented. Prior to cell culture, the mechanical characterization of hydrogels was assessed in terms of stiffness and swelling behavior. Modifications of the UV curing time enabled a fine tuning of the mechanical properties, which at the same time, showed susceptibility to the chemical composition and crosslinking mechanism. All scaffolds displayed excellent cytocompatibility with both tumoral cells while eliciting various cell responses depending on the microenvironment features. Individual and collective cell migration were observed for HCT-116 and MIA PaCa-2 cell lines, highlighting the ability of the colorectal cancer cells to cluster into aggregates of different sizes governed by the surrounding matrix. Additionally, metabolic activity results pointed out to the development of a more proliferative phenotype within stiffer networks. These findings confirm the suitability of the presented platform of GelMA-based hydrogels to conduct 3D cell culture experiments and explore biological processes associated with colorectal and pancreatic cancer.


Assuntos
Neoplasias Colorretais , Gelatina , Humanos , Gelatina/química , Hidrogéis/química , Técnicas de Cultura de Células , Pâncreas , Técnicas de Cultura de Células em Três Dimensões , Microambiente Tumoral
8.
Opt Express ; 21 Suppl 3: A485-93, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24104437

RESUMO

In this paper we develop a model to describe the emission profile from randomly oriented dichroic dye molecules in a luminescent solar concentrator (LSC) waveguide as a function of incoming light direction. The resulting emission is non-isotropic, in contradiction to what is used in almost all previous simulations on the performance of LSCs, and helps explain the large surface losses measured in these devices. To achieve more precise LSC performance simulations we suggest that the dichroic nature of the dyes must be included in the future modeling efforts.

9.
Macromol Rapid Commun ; 34(6): 498-503, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23322378

RESUMO

A polymer network is prepared by the thiol-yne photopolymerization of multifunctional dendrimer with a tetrathiol crosslinker. The network obtained shows a liquid crystalline phase at room temperature, which has been characterized by optical microscopy, differential scanning calorimetry, and X-ray diffraction. Photoinduced deformation of uniaxially aligned free-standing films of the photocrosslinked material has been demonstrated.


Assuntos
Dendrímeros/síntese química , Cristais Líquidos/química , Compostos de Sulfidrila/química , Varredura Diferencial de Calorimetria , Dendrímeros/análise , Luz , Processos Fotoquímicos , Polimerização , Temperatura , Difração de Raios X
10.
Adv Mater ; 35(14): e2209244, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36459991

RESUMO

Recently, significant advances have been achieved to precisely program the response of liquid crystal elastomers (LCEs) through extrusion-based additive manufacturing techniques; however, important challenges remain, especially when well-defined scaffolds based on ultrafine fibers are required. Here the melt electrowriting of reactive liquid crystalline inks, leading, after ultraviolet-light-induced crosslinking, to digitally positioned uniform LCE fibers with diameters ranging from hundreds of nanometers to tens of micrometers is presented, which is hardly accessible with conventional extrusion-based printing techniques. The electrowriting process induces the preferential alignment of the mesogens parallel to the fiber's axis. Such an alignment, defined by the printing path, determines the mechanical response of the crosslinked material upon stimulation. This manufacturing platform allows the preparation of open square lattice scaffolds with ultrafine fibers (a few micrometers in diameter), periods as small as 90 µm, and well-defined morphology. Additionally, the combination of accurate fiber stacking (up to 50 layers) and fiber fusion between layers leads to unprecedented microstructures composed of high-aspect-ratio LCE thin walls. The possibility of digitally controlling the printing of fibers allows the preparation complex fiber-based scaffolds with programmed and reversible shape-morphing, thus opening new avenues to prepare miniaturized actuators and smart structures for soft robotics and biomedical applications.

11.
Macromol Biosci ; 23(12): e2300227, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37572331

RESUMO

From the first experiments with biomaterials to mimic tissue properties, the mechanical and biochemical characterization has evolved extensively. Several properties can be described, however, what should be essential is to conduct a proper and physiologically relevant characterization. Herein, the influence of the reaction media (RM) and swelling media (SM)-phosphate buffered saline (PBS) and Dulbecco's modified Eagle's medium (DMEM) with two different glucose concentrations-is described in gelatin methacrylamide (GelMA) hydrogel mechanics and in the biological behavior of two tumoral cell lines (Caco-2 and HCT-116). All scaffolds are UV-photocrosslinked under identical conditions and evaluated for mass swelling ratio and stiffness. The results indicate that stiffness is highly susceptible to the RM, but not to the SM. Additionally, PBS-prepared hydrogels exhibited a higher photopolymerization degree according to high resolution magic-angle spinning (HR-MAS) NMR. These findings correlate with the biological response of Caco-2 and HCT-116 cells seeded on the substrates, which demonstrated flatter morphologies on stiffer hydrogels. Overall, cell viability and proliferation are excellent for both cell lines, and Caco-2 cells displayed a characteristic apical-basal polarization based on F-actin/Nuclei fluorescence images. These characterization experiments highlight the importance of conducting mechanical testing of biomaterials in the same medium as cell culture.


Assuntos
Hidrogéis , Engenharia Tecidual , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Engenharia Tecidual/métodos , Gelatina/química , Células CACO-2 , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Alicerces Teciduais/química
12.
ACS Appl Polym Mater ; 5(2): 1487-1498, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36817339

RESUMO

The mechanical microenvironment plays a crucial role in the evolution of colorectal cancer, a complex disease characterized by heterogeneous tumors with varying elasticity. Toward setting up distinct scenarios, herein, we describe the preparation and characterization of gelatin methacrylamide (GelMA)-based hydrogels via two different mechanisms: free-radical photopolymerization and photo-induced thiol-ene reaction. A precise stiffness modulation of covalently crosslinked scaffolds was achieved through the application of well-defined irradiation times while keeping the intensity constant. Besides, the incorporation of thiol chemistry strongly increased stiffness with low to moderate curing times. This wide range of finely tuned mechanical properties successfully covered from healthy tissue to colorectal cancer stages. Hydrogels prepared in phosphate-buffered saline or Dulbecco's modified Eagle's medium resulted in different mechanical and swelling properties, although a similar trend was observed for both conditions: thiol-ene systems exhibited higher stiffness and, at the same time, higher swelling capacity than free-radical photopolymerized networks. In terms of biological behavior, three of the substrates showed good cell proliferation rates according to the formation of a confluent monolayer of Caco-2 cells after 14 days of cell culture. Likewise, a characteristic apical-basal polarization of cells was observed for these three hydrogels. These results demonstrate the versatility of the presented platform of biomimetic materials as in vitro cell culture scaffolds.

13.
J Mater Chem B ; 11(18): 4083-4094, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37092961

RESUMO

Soft and mechanically responsive actuators hold the promise to revolutionize the design and manufacturing of devices in the areas of microfluidics, soft robotics and biomedical engineering. In many of these applications, the actuators need to operate in a wet environment that can strongly affect their performance. In this paper, we report on the photomechanical response in a biological buffer of azobenzene-containing liquid crystal elastomer (LCE)-based actuators, prepared by four-dimensional (4D) printing. Although the photothermal contribution to the photoresponse is largely cancelled by the heat withdrawing capacity of the employed buffer, a significant photoinduced reversible contraction, in the range of 7% of its initial length, has been achieved under load, taking just a few seconds to reach half of the maximum contraction. Effective photomechanical work performance under physiological conditions has, therefore, been demonstrated in the 4D-printed actuators. Advantageously, the photomechanical response is not sensitive to salts present in the buffer differently to hydrogels with responses highly dependent on the fluid composition. Our work highlights the capabilities of photomechanical actuators, created using 4D printing, when operating under physiological conditions, thus showing their potential for application in the microfluidics and biomedical fields.


Assuntos
Cristais Líquidos , Compostos Azo , Bioengenharia , Elastômeros
14.
Lab Chip ; 23(10): 2434-2446, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37013698

RESUMO

The tissue microenvironment plays a crucial role in tissue homeostasis and disease progression. However, the in vitro simulation has been limited by the lack of adequate biomimetic models in the last decades. Thanks to the advent of microfluidic technology for cell culture applications, these complex microenvironments can be recreated by combining hydrogels, cells and microfluidic devices. Nevertheless, this advance has several limitations. When cultured in three-dimensional (3D) hydrogels inside microfluidic devices, contractile cells may exert forces that eventually collapse the 3D structure. Disrupting the compartmentalisation creates an obstacle to long-term or highly cell-concentrated assays, which are extremely relevant for multiple applications such as fibrosis or ischaemia. Therefore, we tested surface treatments on cyclic-olefin polymer-based microfluidic devices (COP-MD) to promote the immobilisation of collagen as a 3D matrix protein. Thus, we compared three surface treatments in COP devices for culturing human cardiac fibroblasts (HCF) embedded in collagen hydrogels. We determined the immobilisation efficiency of collagen hydrogel by quantifying the hydrogel transversal area within the devices at the studied time points. Altogether, our results indicated that surface modification with polyacrylic acid photografting (PAA-PG) of COP-MD is the most effective treatment to avoid the quick collapse of collagen hydrogels. As a proof-of-concept experiment, and taking advantage of the low-gas permeability properties of COP-MD, we studied the application of PAA-PG pre-treatment to generate a self-induced ischaemia model. Different necrotic core sizes were developed depending on initial HCF density seeding with no noticeable gel collapse. We conclude that PAA-PG allows long-term culture, gradient generation and necrotic core formation of contractile cell types such as myofibroblasts. This novel approach will pave the way for new relevant in vitro co-culture models where fibroblasts play a key role such as wound healing, tumour microenvironment and ischaemia within microfluidic devices.


Assuntos
Colágeno , Hidrogéis , Humanos , Hidrogéis/química , Colágeno/química , Matriz Extracelular/química , Isquemia , Dispositivos Lab-On-A-Chip
15.
Angew Chem Int Ed Engl ; 51(50): 12469-72, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23124726

RESUMO

Rise or fall: Complex-structured freestanding polymer films with molecular order in three dimensions were prepared through photoalignment of polymerizable liquid crystals. The resulting films deform into cone and saddle shapes upon heating.


Assuntos
Polímeros/química , Cristais Líquidos/química , Polimerização , Temperatura , Raios Ultravioleta
16.
Polymers (Basel) ; 13(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502998

RESUMO

Photoembossing is a powerful photolithographic technique to prepare surface relief structures relying on polymerization-induced diffusion in a solventless development step. Conveniently, surface patterns are formed by two or more interfering laser beams without the need for a lithographic mask. The use of nanosecond pulsed light-based interference lithography strengthens the pattern resolution through the absence of vibrational line pattern distortions. Typically, a conventional photoembossing protocol consists of an exposure step at room temperature that is followed by a thermal development step at high temperature. In this work, we explore the possibility to perform the pulsed holographic exposure directly at the development temperature. The surface relief structures generated using this modified photoembossing protocol are compared with those generated using the conventional one. Importantly, the enhancement of surface relief height has been observed by exposing the samples directly at the development temperature, reaching approximately double relief heights when compared to samples obtained using the conventional protocol. Advantageously, the light dose needed to reach the optimum height and the amount of photoinitiator can be substantially reduced in this modified protocol, demonstrating it to be a more efficient process for surface relief generation in photopolymers. Kidney epithelial cell alignment studies on substrates with relief-height optimized structures generated using the two described protocols demonstrate improved cell alignment in samples generated with exposure directly at the development temperature, highlighting the relevance of the height enhancement reached by this method. Although cell alignment is well-known to be enhanced by increasing the relief height of the polymeric grating, our work demonstrates nano-second laser interference photoembossing as a powerful tool to easily prepare polymeric gratings with tunable topography in the range of interest for fundamental cell alignment studies.

17.
ACS Appl Mater Interfaces ; 12(39): 44195-44204, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32885661

RESUMO

Remote light exposure of photoresponsive liquid crystalline polymers has drawn great attention over the last years as an attractive strategy to generate mechanical work with high spatial resolution. To tailor these materials into practical engineering devices, it is of key importance to gain control over their morphology and thus precisely program their mechanical response, which must also be fast and relevant in magnitude. In this communication, we report the four-dimensional (4D) printing of azobenzene-containing liquid crystalline elastomers (LCEs) that respond to light. During extrusion of the LCE precursor, mesogen orientation is defined by the needle's moving direction enabling a precise definition of the director, which is later fixed by photopolymerization. Fast mechanical responses have been observed in these 4D printed LCE elements when excited with ultraviolet (UV) light. These 4D printed elements lift objects many times heavier than their own weight, demonstrating a capacity to produce effective work. Photochemical and photothermal contributions to the deformation and force have been identified. Advantageously, the use of blue and UV light excitation enables adjustment of generated forces that can be maintained even in the dark and can be released by light excitation or temperature. The demonstrated ability to generate light-responsive elements quickly delivering sufficient work paves the way for implementing remotely addressed mechanical functions to future soft robotics and engineering.

18.
Polymers (Basel) ; 11(3)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30960414

RESUMO

Accurate positioning of luminescent materials at the microscale is essential for the further development of diverse application fields including optoelectronics, energy, biotechnology and anti-counterfeiting. In this respect, inkjet printing has recently attracted great interest due to its ability to precisely deposit with high throughput and no contact, functional materials on different types of substrates. Here, we present a novel photoacid catalysed organic-inorganic hybrid luminescent ink. The formulation, containing monomers bearing epoxy and silane functionalities, a photoacid generator and a small percentage of Rhodamine-B, shows good jetting properties and adequate wetting of the deposited droplets on the receiving substrates. Ultraviolet exposure of the deposited material triggers the cationic ring-opening polymerization reaction of the epoxy groups. Concomitantly, if atmospheric water is available, hydrolysis and condensation takes place, overall leading to a luminescent crosslinked hybrid organic-inorganic polymeric material obtained through a simple one-step curing process, without post baking steps. Advantageously, protection of the ink from actinic light delays the hydrolysis and condensation conferring long-term stability to the ink. Digital patterning leads to patterned emissive surfaces and elements with good adhesion to different substrates, mechanical and optical properties for the fabrication of optical and photonic elements and devices.

19.
Materials (Basel) ; 9(11)2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28774032

RESUMO

Inkjet printing, traditionally used in graphics, has been widely investigated as a valuable tool in the preparation of functional surfaces and devices. This review focuses on the use of inkjet printing technology for the manufacturing of different optical elements and photonic devices. The presented overview mainly surveys work done in the fabrication of micro-optical components such as microlenses, waveguides and integrated lasers; the manufacturing of large area light emitting diodes displays, liquid crystal displays and solar cells; as well as the preparation of liquid crystal and colloidal crystal based photonic devices working as lasers or optical sensors. Special emphasis is placed on reviewing the materials employed as well as in the relevance of inkjet in the manufacturing of the different devices showing in each of the revised technologies, main achievements, applications and challenges.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa